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Developers and users of watershed mod-
eling systems face a tradeoff between 
increased spatial detail and the amount 
of time and computing resources needed 
to build, calibrate, and run models. A 
number of systems have been developed 
that can estimate or predict surface water 
runoff and nonpoint source (NPS) pollu-
tion at different scales, under variable soil, 
land use, climate, and topographic condi-
tions. With advances in data processing 
and network storage capacity, public data 
on these variables are increasingly available 
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Abstract: Whether or not the use of generalized, State Soil Geographic (STATSGO) data 
in place of higher resolution Soil Survey Geographic (SSURGO) data reduces the accuracy 
of hydrologic and nonpoint source pollution models has thus far been an open question. 
Comparative studies have yet to reveal a systematic bias in STATSGO–based model outputs 
on account of their small sample sizes and differences in the models employed. In an effort 
to determine whether a bias exists, direct runoff was modeled for a hypothetical 24-hour 
rainfall event, using STATSGO and SSURGO as alternative inputs to a series of standard 
rainfall-runoff models in nearly 300 contiguous watersheds, spanning most of the state of 
Wisconsin. The Long-Term Hydrologic Impact Assessment (L-THIA) modeling tool was 
used for this analysis. Results indicate that there is a negative bias in STATSGO–based 
runoff over the large majority of the study area and that the degree of underprediction is 
highest for spatially disaggregated (distributed parameter) models. Runoff was also mod-
eled for daily precipitation in six gauged watersheds and was compared to observed runoff, 
with SSURGO–based, distributed models typically producing the most accurate outputs. In 
addition, a series of regression analyses was conducted to determine whether, and in what 
direction, the STATSGO bias is affected by the percent coverage of land uses that discourage 
infiltration. The results of these analyses suggest that STATSGO–based, lumped, and par-
tially distributed models, on average, underpredict the relative impact of increasing land-use 
intensity. These findings indicate that two of the most common approaches to improving 
the computational efficiency of watershed modeling systems: the use of lower resolution 
soils data and the lumping of model parameters to larger spatial units of analysis, combine 
to reduce the accuracy of modeled runoff under current conditions, while simultaneously 
underestimating the impact of potential future land-use change.
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at higher resolutions. Spatially disaggre-
gated Soil Survey Geographic (SSURGO) 
data are now available for the vast major-
ity of US counties (for the current status of 
available SSURGO data across the United 
States see http://soildatamart.nrcs.usda.
gov/statusmap.aspx), in addition to gener-
alized State Soil Geographic (STATSGO) 
data. Early versions of the desktop Soil and 
Water Assessment Tool (SWAT) (Arnold et 
al. 1998) relied exclusively on STATSGO 
for soil input variables. More recent versions 
accept SSURGO data as well (Di Luzio 

et al. 2004), although the additional time 
needed to build and run SSURGO–based 
SWAT models can be considerable (Geza 
and McCray 2008). Similarly, Internet-based 
systems such as the Long-Term Hydrologic 
Impact Assessment (L-THIA) tool (Engel et 
al. 2003) have, until recently, relied solely on 
STATSGO. At present, the Web-based L-
THIA system utilizes SSURGO data in 2 of 
the 48 contiguous United States: Indiana and 
Wisconsin, with plans to expand to other 
states for which SSURGO data are available 
in all counties.

The STATSGO and SSURGO soil data-
bases are structured according to widely 
different levels of spatial aggregation. The 
SSURGO map units are digitized from 
county-level soil surveys at spatial scales 
ranging from 1:12,000 and 1:63,360, and 
are typically comprised of a single compo-
nent soil (i.e., soil series phase) or otherwise 
up to three components grouped together 
according to shared physical properties 
(USDA NRCS 1995). The STATSGO 
units are mapped at a scale of 1:250,000 by 
generalizing soil survey maps where they 
exist and otherwise interpolating map units 
based on broad physiographic characteristics. 
A single STATSGO map unit can contain 
up to twenty-one different component soils 
(USDA NRCS 1994). The STATSGO map 
units, therefore, lack discrete location infor-
mation for most soil physical properties.

Whether or not using higher resolution 
SSURGO data improves the accuracy of 
hydrologic or NPS pollution models has, 
thus far, been an open question (for exam-
ple, see Di Luzio et al. 2004; Gowda and 
Mulla 2005; Anderson et al. 2006; Peschel 
et al. 2006; Geza and McCray 2008). 
Mednick et al. (2008) reviewed eighteen 
comparative studies and found that while 
SSURGO–based predictions of various 
stream flow and water quality parameters 
were more often closer to observed condi-
tions, results vary considerably across—and 
in some cases within—the different stud-
ies, with STATSGO–based models proving 
more accurate in a number of cases. More 
recently, Heathman et al. (2009) reported 
that uncalibrated, SSURGO–based SWAT 
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models produced more accurate predictions 
of monthly streamflow than did otherwise 
identical STATSGO–based models in the 
Cedar Creek watershed of northeastern 
Indiana. Similarly, Romanowicz et al. (2005) 
found that uncalibrated SWAT models of 
the Thyle River watershed in Belgium were 
more accurate using spatially detailed soils 
data (1:25,000) in place of highly generalized 
data (1:500,000).

Due to the limited number of watersheds 
modeled in these studies (rarely more than 
one) and the underlying differences in the 
models employed, a systematic bias has yet 
to be revealed. Nor can any association 
be drawn between the relative accuracy 
of model outputs (using STATSGO ver-
sus SSURGO) with any of the commonly 
reported characteristics of the watersheds 
modeled (i.e., size, region, climate) or of the 
models themselves (Mednick et al. 2008).

Three nonmodeling studies found differ-
ences between soil physical properties reported 
in the two databases, which suggest the pos-
sibility of a systematic bias. Analyzing selected 
STATSGO map units in Colorado, Murray 
(2002) and Murray and McCray (n.d.) found 
that aerially weighted soil component val-
ues for available water capacity and hydraulic 
conductivity (reported in the soils databases 
as permeability) were higher, on average, than 
the corresponding, aerially weighted values 
in SSURGO. In a grid-based analysis across 
Kansas, Juracek and Wolock (2002) similarly 
found that STATSGO values for permeability 
were higher, on average, than the correspond-
ing values in SSURGO. Furthermore, they 
found that the level of variability in the mea-
sured difference between the two databases 
increased with the spatial resolution of the 
averaging area (grid cell) and the proximity 
to streams.

In an effort to determine whether or not 
a systematic bias exists in STATSGO–based 
runoff predictions, direct runoff was esti-
mated in nearly 300 contiguous watersheds 
across Wisconsin, using STATSGO and 
SSURGO soils, alternatively, as inputs to 
a series of standard rainfall-runoff models. 
The desktop version of the L-THIA model-
ing tool was used for this analysis. The first 
objective was to determine whether a sys-
tematic bias exists, and if so, the extent to 
which it is affected by the spatial “lumping” 
of model parameters into successively larger 
units of analysis: stream catchments, subwa-
tersheds, and full watersheds. The second 

objective was to determine whether, and in 
what direction, any such bias is related to the 
proportion of a watershed’s surface area cov-
ered by land uses that discourage infiltration. 
Such a relationship has implications for the 
use of STATSGO–based models within a 
land-use planning context.

Materials and Methods
Study Area. The study area (figure 1) includes 
298 contiguous watersheds, mapped at the 
10-digit hydrologic unit code (HUC) level. 
The HUC is the hierarchical referencing 
scheme of the national Watershed Boundary 

N

Figure 1
Study Area: 298 contiguous watersheds, Wisconsin, United States. Study area watersheds are 
mapped at the 10-digit hydrologic unit code (HUC) level, subdivided into 1,524 subwatersheds 
(12-digit HUC) and 44,821 nested stream catchments, spanning a total area of approximately 
125,000 km2. Numbers on map indicate six gauged watersheds that were additionally selected 
from within the study area for the purpose of comparing modeled runoff to observed runoff.

* Subsample: Watershed units (12-digit HUC and larger) that were continuously gauged by the 
US Geological Survey from 1999 through 2003. These were selected for the purpose of  
comparing modeled runoff to observed runoff.
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Database—a consistent and standardized sys-
tem of watershed delineation spanning the 
United States at multiple and increasingly 
finer scales (Berelson et al. 2004). Hydrologic 
units range from regions and subregions (2 
and 4 digits), basins and subbasins (6 and 8 
digits),  watersheds and subwatersheds (10 
and 12 digits), and catchments and sub-
catchments (14 and 16 digits). Figure 1 
also shows 1,524 subwatersheds (12-digit 
HUC) and 44,821 stream catchments nested 
therein, spanning approximately 125,000 
km2 (48,300 mi2), or 88% of the state of 
Wisconsin. Watersheds falling partly outside 
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of the state were excluded, as were water-
sheds for which significant portions of their 
nonwater surface area are missing data on soil 
hydrologic group in either of the two data-
bases. These included the four watersheds 
containing central Milwaukee, for which no 
soil survey data exist, plus nine watersheds in 
the northwestern portion of the state, which 
contain parts of an extensive area classified 
by STATSGO as rock outcrop. Six gauged 
watersheds were additionally selected from 
within the study area for the purpose of com-
paring modeled runoff to observed runoff 
(figure 1). This subsample constitutes six of 
the seven 12-digit HUC or larger watershed 
units in Wisconsin that are gauged in their 
entirety by the US Geological Survey and 
for which continuous daily data are available 
for both streamflow and precipitation for the 
years 1999 through 2003.

The five-year period between 1999 and 
2003 was selected to minimize the poten-
tial effect of land-use change on observed 
runoff. The National Land Cover Database 
reflects land use as of 2001. A gauged water-
shed located in the southwestern portion of 
the state was removed from this subsample 
on account of a visually apparent discrepancy 
in SSURGO–reported soil hydrologic group 
across two adjacent counties. Contiguous 
map units on opposite sides of the county 
boundary were assigned to different hydro-
logic groups. While this discrepancy has a 
minimal effect on the state-wide analysis of 
ungauged watersheds across Wisconsin, it 
has the potential to skew the comparison of 
modeled runoff with observations made at 
the local stream gauge.

Wisconsin is characterized by a wide range 
of soil types and land uses. Soils vary with the 
study area’s underlying glacial and nonglacial 
geology. Of note are several large areas in 
the central and far northern regions of the 
state characterized by well drained, sandy 
soils interspersed with large areas of poorly 
drained, clay and loamy soils. Cultivated 
crops and pasture are the dominant land uses 
in the southern and eastern regions, while 
forest cover dominates the northern region. 
A mix of agricultural and forest land domi-
nates the central and west-central regions. 
High concentrations of urban land uses occur 
along the Lake Michigan coast in the south-
eastern region, around Lake Winnebago and 
Green Bay in the east-central region, and 
around the city of Madison in the south-

central region, along with several smaller cit-
ies throughout the state.

In order to create a fully nested set of 
watershed units, stream catchment polygons 
derived from 30 m (98.4 ft) digital eleva-
tion data were used as building blocks. These 
were obtained from the Horizon Systems 
Corporation’s (2006) National Hydrography 
Dataset-Plus (NHD-Plus) and aggregated 
into subwatersheds and watersheds, respec-
tively, according to which 1:24,000 12- and 
10-digit HUC reference polygons con-
tained the majority of their land area. The 
12- and 10-digit HUC polygons are part 
the national Watershed Boundary Database, 
developed through a combination of manual 
and semiautomated watershed delineation 
procedures (Berelson et al. 2004). These 
boundaries were obtained from the USDA 
NRCS (2008a) Geospatial Data Gateway. 
With very few exceptions, the aggregated 
watershed and subwatershed boundaries var-
ied minimally from the reference 12- and 
10-digit HUC boundaries. Discrepancies 
that would have changed the shape and size 
of two of the six gauged watersheds were 
corrected by splitting NHD-Plus catch-
ment polygons where they crossed reference  
watershed boundaries.

Overview of Rainfall-Runoff Models. In 
order to test the sensitivity of predicted run-
off to alternative soil data inputs, the L-THIA 
extension to ArcView geographic informa-
tion system software (Engel 2005) was used 
to model direct runoff (total runoff minus 
baseflow) in response to an average two-year, 
24-hour rainfall event that was applied uni-
formly across all watersheds in the study area. 
The L-THIA extension was developed to 
provide planners and decision makers with a 
readily available tool for predicting the impact 
of proposed or potential land-use change on 
average annual runoff and NPS pollution 
(Harbor 1994; Bhaduri et al. 2000; Engel et 
al. 2003). It can also be used to model runoff 
and NPS pollution from individual rainfall 
events. The underlying modeling framework 
is a spatially distributed automation of the 
Soil Conservation Service curve number 
(CN) method (USDA SCS 1986), coupled 
with a series of empirically derived event 
mean concentration coefficients for different 
NPS pollutants.

The CN method predicts direct runoff 
depth (Q) as a function of 24-hour rain-
fall depth (P) and an area’s estimated runoff 
potential (equation 1):

Q =
 	 (P – Ia)2	

,	 (1)	 (P – Ia) + S

where Ia is the initial abstraction (the 
amount of rainfall intercepted, absorbed, or 
impounded before runoff begins) and S is the 
surface rainfall retention parameter (the max-
imum amount of water that will be absorbed 
after runoff begins). These parameters can be 
estimated according to the combination of 
an area’s soil hydrologic group and its land 
use/land cover condition, as represented by 
one of a series of empirically derived curve 
numbers published in the USDA SCS (1986), 
which range from 30 (forest cover on well 
drained soils) to 98 (impervious surfaces). 
Modified or alternative curve numbers can 
also be used.

While it has been the subject of significant 
critiques (for example, see Garen and Moore 
2005), the CN method has been character-
ized as simple, predictable, and stable (Ponce 
and Hawkins 1996) and serves as the core 
component of numerous hydrologic and 
NPS pollution modeling systems. L-THIA’s 
automation of the CN method enabled rain-
fall-runoff to be modeled across the entire 
study area for a hypothetical rainfall event, 
using highly disaggregated spatial units of 
analysis (i.e., unique combinations of soil 
hydrologic group and National Land Cover 
Database [NLCD] land use). The STATSGO 
and SSURGO–reported soil hydrologic 
groups were used, respectively, for the alter-
native model runs. In this way, the effect of 
using one database versus the other in a spa-
tially distributed model could be compared 
within each of the study area’s 298 water-
sheds, in order to determine whether and to 
what extent there is a systematic bias.

In addition to the spatially distributed CN 
models, curve numbers were spatially aver-
aged (lumped) across three successively larger 
units of analysis: stream catchments, subwa-
tersheds, and watersheds, and L-THIA was 
rerun for a total of eight study area–wide 
models. This enabled the comparison of 
STATSGO versus SSURGO–based predic-
tions under distributed, partially distributed, 
and lumped parameter models. Lastly, a series 
of STATSGO and SSURGO–based distrib-
uted, partially distributed (units of analysis = 
stream catchments), and lumped parameter 
(units of analysis = subwatersheds) models 
were run for observed daily precipitation in 
six watershed units that were continuously 
gauged for stream flow at their discharge 
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points by the US Geological Survey between 
1999 and 2003 (figure 1).

Soil and Land-Use Data. Wisconsin 
STATSGO map units and soil attribute tables 
were downloaded from the USDA NRCS 
(2008b) Soil Data Mart. Hydrologic group 
values contained in the database’s Map-Unit 
Aggregated Attribute table were assigned 
to map-unit polygons via the unique Map 
Unit Key identifier. The SSURGO data 
were similarly downloaded and processed 
for each of Wisconsin’s 72 counties and were 
combined into a single, state-wide layer. The 
STATSGO and SSURGO map units were 
converted from polygons to zones of 30 m 
(98.4 ft) grid cells, with single-digit numeric 
codes corresponding to their hydrologic 
group (table 1).

Land-use data, based on the spectral clas-
sification of 30 m (98.4 ft) Landsat 7 satellite 
imagery, were obtained from the 2001 NLCD 
(Homer et al. 2004; MLRC 2008). Each of 
the fourteen different NLCD classes within 
the study area were assigned a unique four-
digit numeric identifier (e.g., “Developed, 
High Intensity” = 2400). The resulting grid 
values were then added to the single-digit 
STATSGO and SSURGO hydrologic group 
values for all 30 m grid cells, outputting two 
new grid layers, each containing 56 unique 
combinations of soil hydrologic group and 
NLCD land use. Finally, cells were assigned 
curve numbers according to lookup tables 
published by the USDA SCS (1986), plus CN 
values recommended by Arnold and Friedel 
(2000) for forested and emergent wetlands 
(table 2). Cells comprising open water were 
assigned a null value, as were other cells not 
assigned to a soil hydrologic group within 
SSURGO, such as open mines.

Model Execution. Using the STATSGO 
and SSURGO–based CN grids, respectively, 
L-THIA was run across the study area for 
a uniform 7 cm (2.75 in) rainfall event (the 
average two-year, 24-hour storm event over 
two-thirds of the area), assuming an initial 
abstraction (Ia) of 0.2 × S (see equation 1) 

Table 1
Soil hydrologic groups.

	 Assigned
	 numeric
Group	 code	 Infiltration rates*

A	 1	 >0.76 cm h–1

B	 2	 0.38 to 0.76 cm h–1

C	 3	 0.13 to 0.38 cm h–1

D	 4	 0.00 to 0.13 cm h–1

* Rates reported in USDA SCS (1986).

Table 2
Curve numbers assigned by land use and soil hydrologic group.

	 Curve number by soil hydrologic group

National Land Cover Database land use	 A	 B	 C	 D

Developed, high intensity	 89	 92	 94	 95
Barren land	 77	 86	 91	 94
Developed, medium intensity	 77	 85	 90	 92
Cultivated crops	 64	 75	 82	 85
Developed, low intensity	 54	 70	 80	 85
Developed, open space	 49	 69	 79	 84
Emergent herbaceous wetlands	 44*	 65*	 77*	 82*
Pasture/hay	 39	 61	 74	 80
Woody wetlands	 35*	 61*	 74*	 80*
Shrub/scrub	 35	 56	 70	 77
Grassland/herbaceous	 30	 58	 71	 78
Deciduous forest	 30	 55	 70	 77
Evergreen forest	 30	 55	 70	 77
Mixed forest	 30	 55	 70	 77
Note: Unless otherwise noted, curve numbers are based on USDA SCS (1986).
* Curve numbers recommended by Arnold and Friedel (2000).

and average antecedent soil moisture con-
ditions. Raw outputs consisted of predicted 
runoff depth (in centimeters) per 30 m (98.4 
ft) grid cell, which was then averaged across 
each catchment, subwatershed, and water-
shed. To test whether the lumping of model 
parameters affects the STATSGO–SSURGO 
differential in predicted runoff, L-THIA 
was rerun with CN values spatially aver-
aged across stream catchments (i.e., partially 
distributed CN models), as well as subwa-
tersheds, and watersheds, respectively (i.e., 
lumped CN models).

Comparison of Model Predictions to 
Observed Runoff. In addition to predicting 
runoff in response to a single, hypotheti-
cal rainfall event, a series of alternative 
STATSGO and SSURGO–based mod-
els were run to estimate runoff associated 
with historic rainfall in each of six gauged 
watersheds (figure 1). Data on daily rainfall 
and corresponding runoff were obtained 
for May through September, 1999, through 
2003. Comparisons to observed daily runoff 
were limited to Wisconsin’s growing season, 
since L-THIA models do not account for 
snowmelt, snow cover, or frozen soil.  The 
midpoint of the analyzed period corre-
sponds approximately with the 2001 NLCD 
land-use data. Rainfall totals, measured at 
cooperative weather stations within or near 
the gauged watersheds, were downloaded 
from the National Climatic Data Center 
(USDOC NOAA 2008). Daily runoff 
was derived from US Geological Survey 

stream gauge data using the local minimum 
baseflow separation method within the Web-
based Hydrologic Analysis Tool (Lim et al. 
2005; Purdue University 2008). In order to 
account for variable antecedent soil moisture 
conditions, CN values were adjusted over 
time to reflect assumed antecedent soil mois-
ture conditions I, II, and III, according to the 
preceding five days of precipitation (Mishra 
and Singh 2003).

Within each of the gauged watersheds, 
daily predicted runoff was totaled per month 
for each model and tested for agreement 
with observed monthly runoff, using the 
Nash-Sutcliffe Efficiency (ENS) coefficient 
(Nash and Sutcliffe 1970). Although calibra-
tion procedures exist for L-THIA (Lim et 
al. 2006b), models were left uncalibrated in 
order to avoid masking the effect of alter-
native soil data inputs. As a result, initial 
model runs significantly underpredicted 
runoff in all six of the watersheds. Lim et 
al. (2006a) achieved significant improve-
ments in L-THIA efficiency by lowering 
the initial abstraction ratio, Ia/S (see equa-
tion 1) from the commonly used 20% to 
the 5% recommended by Hawkins et al. 
(2002). Incorporating this procedure within 
a second round of L-THIA runs resulted in 
increased sensitivity to smaller rainfall events, 
thereby reducing the magnitude by which 
the uncalibrated models under-predicted 
runoff, while maintaining the signal of vari-
able soil data resolution.
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Estimating the Effect of Land Use. 
Incremental changes in land use can have 
significant hydrologic impacts over time 
(Defries and Eshleman 2004). In particular, 
the replacement of natural or seminatural 
land cover (e.g., forest, brush, grasslands) with 
impervious and semi-impervious surfaces 
(e.g., rooftops, driveways, lawn) reduces the 
amount of rainfall infiltrating the soil, thereby 
increasing the amount of surface runoff 
(Arnold and Gibbons 1996). The accuracy 
with which different models estimate runoff 
under current conditions is not necessarily 
indicative of their ability to predict changes 
in runoff under alternative land-use sce-
narios. For example, a model that accurately 
predicts runoff in a rural watershed might 
subsequently underpredict runoff associated 
with urban development, if the underlying 
data resolution or spatial units of analysis are 
too coarse to detect small-scale changes to 
imperviousness and land-cover quality. Such 
errors could have significant consequences 
within a land-use planning context.

The limited availability of long-term 
streamflow data, coupled with changes in 
land-use classification methods from one 
time period to the next (e.g., Vogelmann et 
al. 2001; Homer et al. 2004), make it difficult 
to conduct longitudinal analyses (Defries 
and Eshleman 2004). While some of these 
limitations have been overcome in water-
shed-specific investigations (e.g., Bhaduri et 
al. 2000), the state-wide scope of the present 
study made conducting a valid pretest/post-
test experiment impracticable.

As an alternative, a series of cross-sec-
tional ordinary least squares (OLS) regression 
analyses were conducted in order to deter-
mine whether, and to what extent, there is 
an independent relationship between the 
intensity of land use within a watershed unit 
(i.e., the extent of land uses that discour-
age infiltration) and the difference between 
STATSGO and SSURGO–based model 
predictions. In order to minimize the poten-
tial for spatial autocorrelation among OLS 
residuals (Anselin 1988), these analyses were 
conducted on a spatially random sample of 
200 subwatersheds, selected from the full 
sampling domain (N = 1,524) according to 
randomly generated geographic coordinates.

In order to isolate the effect of land use, a 
control variable was created to account for 
the extent to which STATSGO misclassi-
fies soil hydrologic group. First, state-wide 
STATSGO and SSURGO grids were com-

bined and reclassified as either “match” (i.e., 
infiltration reported in STATSGO is equal 
to that reported in SSURGO) or one of 
12 possible types (T) of hydrologic group 
misclassification (table 3). Next, the percent 
of each subwatershed covered by each mis-
classification type (PctMCT) was calculated. 
The STATSGO – SSURGO differential in 
modeled runoff (SSDiff) was then regressed 
on this control variable, as well as a land-use 
intensity variable, measured as the combined 
aerial coverage of the five NLCD land uses 
with the highest CN values (PctLU). These 
included “Cultivated Crops,” “Barren Land,” 
and all three levels of “Developed” (table 2).

For each subwatershed, i, the basic regres-
sion formula (equation 2) was

SSDiffi = α + (β1 × PctLUi)+(βT × PctMCTi) + εi,	 (2)

where α is a constant, β1 is the partial 
regression slope coefficient for the land-use 
intensity variable, βT is the slope coefficient 
for hydrologic group misclassification type 
T, and ε is the error term. Separate analyses 
were conducted for SSDiff associated with 
the distributed, partially distributed, and 

Table 3
State Soil Geographic (STATSGO) database misclassification of soil hydrologic group across the 
study area.

	 STATSGO	 SSURGO	 	 Percent of
Type*	 hydrologic group	 hydrologic group	 Area (km2)†	 total area†

STATSGO overestimates infiltration
A (D)	 A	 D	 2,942	 2%
A (C)	 A	 C	 678	 1%
A (B)	 A	 B	 4,116	 3%
B (D)	 B	 D	 11,369	 9%
B (C)	 B	 C	 8,245	 7%
C (D)	 C	 D	 5,534	 4%
	 	 	 32,884	 26%
STATSGO underestimates infiltration
D (A)	 D	 A	 1,385	 1%
D (B)	 D	 B	 2,191	 2%
D (C)	 D	 C	 1,363	 1%
C (A)	 C	 A	 679	 1%
C (B)	 C	 B	 4,657	 4%
B (A)	 B	 A	 4,848	 4%
			   15,123	 13%
No misclassification		  75,679	 61%
Total	 	 	 123,686	 100%
SSURGO = Soil Survey Geographic database.
* Type of misclassification (T) in equation 2.
† Area and total area do not include open water or SSURGO map units not assigned to a soil  
hydrologic group; e.g., open mines.

lumped CN models. Pearson’s correlation 
matrices and variance inflation factors were 
used to confirm the absence of multicol-
linearity between the thirteen explanatory 
variables (Kutner et al. 2004).

Results and Discussion
STATSGO Bias in Estimated Runoff 
Potential. As summarized in table 3, 
STATSGO misclassifies soil hydrologic group 
in a manner that overestimates infiltration 
relative to SSURGO across approximately 
36,000 km2 (13,900 mi2) or 26% of the study 
area. By comparison, STATSGO underesti-
mates infiltration relative to SSURGO across 
12% of the study area. These results gener-
ally agree with the findings of Jurasek and 
Wolock (2002), Murray (2002), and Murray 
and McCray (n.d.), and indicate a systematic 
bias in estimated runoff potential as reported 
by STATSGO. Subtracting SSURGO–based 
minimum infiltration rates from STATSGO–
based minimum infiltration rates (table 1) 
for each 30 m (98.4 ft) grid cell outputs a 
continuous surface of variable over and 
underestimation. Spatially averaging these 
values across nested watershed units pro-
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N

Figure 2
State Soil Geographic (STATSGO) database bias in estimated runoff potential, relative to Soil 
Survey Geographic (SSURGO) database.

* Subwatersheds over which the average difference between STATSGO and STATSGO–reported 
minimum infiltration rates (table 1) is positive.
† Subwatersheds over which the average difference is negative.

Legend
STATSGO overestimates infiltraton*
STATSGO underestimates infiltration†
Lake Winnebago
Excluded watersheds

0	 50 km

vides an indication of whether, and to what 
degree, model-based runoff predictions are 
likely to be biased in one direction or the 
other for a given stream catchment, subwa-
tershed, or watershed. Positive values indicate 
watershed units for which STATSGO over-
estimates infiltration, on average relative to 
SSURGO, and, therefore, underestimates 
runoff potential. Across the study area, this 
outcome occurs in 66% of stream catch-
ments, 75% of subwatersheds (figure 2), and 
81% of watersheds.

STATSGO Bias in Model-Predicted 
Runoff. The negative bias revealed in 
STATSGO–based runoff potential across the 
study area, relative to SSURGO, is reflected 
in the outputs of the STATSGO versus 
SSURGO–based rainfall-runoff models. Table 

4 lists descriptive statistics for the STATSGO 
– SSURGO differential in predicted runoff 
for the uniform 7 cm (2.75 in) rainfall event. 
These results indicate that STATSGO–based 
model predictions are lower, on average, than 
SSURGO–based predictions and that the 
degree of underprediction is highest for the 
distributed CN (i.e., spatially disaggregated) 
models. Moreover, the degree of dissimilarity 
between the STATSGO and SSURGO–
based predictions increases as watershed units 
become successively smaller: from watershed, 
to subwatershed, to stream catchment. The 
latter results are similar to comparative statis-
tics on soil permeability reported by Juracek 
and Wolock (2002).

Relative Accuracy. As shown in table 5, the 
various STATSGO and SSURGO–based 

models for three of the six gauged watersheds 
(1, 2, and 3) had positive ENS values, indicat-
ing that they were more accurate than using 
the mean of observed monthly runoff as the 
predictor. Only Watershed 1 had ENS values 
that could be considered “good” to “very 
good” (Moriasi et al. 2007). The remain-
ing watersheds fell into the “unsatisfactory” 
range (i.e., ENS < 0.5), with Watershed 6 pro-
ducing highly negative coefficients reflecting 
extreme fluctuations in observed streamflow 
(table 5).

It is important to note that these mod-
els are not calibrated and that the principal 
focus here is on the relative, as opposed to 
absolute, efficiency of the STATSGO versus 
SSURGO–based models. In five of the six 
watersheds, the model with the highest ENS 
value was the SSURGO–based, distributed 
CN model. This particular model predicted 
the highest runoff values for each water-
shed, whereas the STATSGO–based, lumped 
CN model predicted the lowest values. In 
Watershed 5, all of the models overesti-
mated runoff, such that the negative bias in 
STATSGO models resulted in improved effi-
ciency (table 5).

Land-Use Effect. Results of the OLS 
regression models (see equation 2) indicate 
the presence of an independent relationship 
between the extent to which a watershed unit 
is covered by impervious surfaces—or other-
wise lower quality vegetative cover—and the 
degree to which STATSGO–based models 
underpredict runoff relative to SSURGO. 
Table 6 reports the partial regression slope 
coefficients for the land-use variable PctLU 
and the control variable PctMCT. Nearly all 
of the variation in the dependent variable 
SSDiff (STATSGO minus SSURGO–based 
runoff predictions) can be explained by the 
combined variation in PctLU and PctMCT. 
Adjusted r2 values are 0.997, 0.962, and 
0.921, respectively, for the distributed, par-
tially distributed, and lumped CN models.

As shown in table 6, SSDiff for the dis-
tributed CN models increases with PctLU, 
when controlling for PctMCT. The slope 
coefficient is small (0.001) but statistically 
significant, indicating that an additional 10% 
of a subwatershed’s area covered by urban-
ized, cultivated, and/or barren land will, on 
average, correspond with a 0.01 cm increase 
in STATSGO–based runoff predictions, rela-
tive to SSURGO, controlling for the extent 
of soil hydrologic group misclassification. 
This finding suggests that STATSGO–based, 
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Table 4
State Soil Geographic (STATSGO) database – Soil Survey Geographic (SSURGO) database  
differential (SSDiff) in modeled runoff for a 7 cm rainfall event.

	 	 Difference (cm), STATSGO – SSURGO

Watershed	 	 	 	 	 	 Standard
unit	 Model type	 Mean	 Median	 Minimum	 Maximum	 deviation

Catchment	 Distributed CN	 –0.23	 –0.18	 –3.23	 3.23	 0.60
(N = 44,821)	 Lumped CN	 –0.13	 –0.10	 –3.41	 3.26	 0.63

Subwatershed	 Distributed CN	 –0.24	 –0.22	 –1.43	 1.22	 0.33
(N = 1,524)	 Partially distributed*	 –0.13	 –0.12	 –1.27	 1.51	 0.34
	 Lumped CN	 –0.15	 –0.14	 –1.44	 1.58	 0.34

Watershed	 Distributed CN	 –0.23	 –0.21	 –1.00	 0.87	 0.26
(N = 298)	 Partially distributed*	 –0.13	 –0.14	 –0.93	 1.05	 0.26
	 Partially distributed†	 –0.15	 –0.14	 –0.92	 1.03	 0.27
	 Lumped CN	 –0.17	 –0.15	 –0.98	 1.01	 0.27
Note: CN = curve number.
* Unit of analysis = stream catchment.
† Unit of analysis = subwatershed.

Table 5
Nash-Sutcliffe Efficiency coefficients (ENS) for the various models.

	 Lumped CN†		 Partially distributed CN‡	 Distributed CN

Watershed	 STATSGO	 SSURGO	 STATSGO	 SSURGO	 STATSGO	 SSURGO

1	 0.80	 0.80	 0.80	 0.81	 0.81	 0.84*
2	 0.18	 0.22	 0.19	 0.22	 0.25	 0.30*
3	 0.37*	 0.26	 0.37	 0.24	 0.32	 0.16
4	 –0.91	 –0.84	 –0.90	 –0.82	 –1.36	 –0.74*
5	 –1.05	 –0.91	 –1.03	 –0.89	 –0.94	 –0.79*
6	 –35.9	 –35.4	 –35.7	 –35.3	 –35.3	 –34.9*
Note: CN = curve number. STATSGO = State Soil Geographic database. SSURGO = Soil Survey 
Geographic database.
* Most efficient model (highest ENS) for each watershed.
† Unit of analysis = subwatershed.
‡ Unit of analysis = stream catchment.

distributed parameter models will tend to 
overpredict the impact of increasing land use 
intensity (e.g., the removal of farmland from 
conservation reserve). This makes sense intu-
itively, since the effect of increasing land-use 
intensity should be higher, all else being equal, 
in areas where underlying soils have higher 
infiltration rates. Because STATSGO–based 
models tend to underestimate runoff under 
baseline conditions, it follows that they will 
tend to overpredict the effect of increasing 
land-use intensity.

The sign of the slope coefficient for PctLU 
changes, however, when the dependent vari-
able is SSDiff for the partially distributed 
or lumped CN models (table 6). In both 
cases, the coefficient is –0.001, indicating 
that a 10-point increase in PctLU will cor-
respond, on average, with a 0.01 cm (0.004 
in) decrease in STATSGO–based runoff pre-
dictions, relative to SSURGO. This suggests 
that STATSGO–based lumped and partially 
distributed models will tend to underpredict 
the effect of increasing land-use intensity. 
The reason for this reversal is the fact that 
urban development and cultivated cropland 
typically avoid areas reported in SSURGO as 
poorly drained but in STATSGO as well- or 
moderately-well drained. Often, such areas 
represent pockets of land that are less suitable 
for intensive use than their surroundings but 
are too small to be captured by STATSGO 
map units.

Figure 3 illustrates this pattern in two 
subwatersheds (1 and 2) with similar hydro-
logic group rankings but different land-use 
intensities. Approximately 70% of each 
subwatershed is covered by soils for which 
STATSGO and SSURGO are in agreement, 
while 26% of each is covered by soils rated 
as D (poorly drained) in SSURGO, but B 
(moderately well-drained) in STATSGO. 
Subwatershed 1, however, has little in the 
way of intensive land uses, with just 2% in 
cultivated crops, whereas one-quarter of sub-
watershed 2 is covered by cultivated crops 
(23%) and low-to-medium intensity urban 
development (2%). Over three-quarters of 
the land characterized by more intensive uses 
in subwatershed 2 coincide with areas where 
STATSGO and SSURGO are in agreement, 
whereas only 15% coincide with areas classi-
fied as hydrologic group D in SSURGO but 
B in STATSGO.

As illustrated in Figure 4, the spatial lump-
ing of curve numbers increases the degree 
to which STATSGO underpredicts run-

Figure 3
Two subwatersheds (1 and 2) with similar soil hydrologic conditions but different land-use  
intensities. (a) Approximately 70% of each subwatershed is covered by soils for which  
STATSGO (State Soil Geographic database) and SSURGO (Soil Survey Geographic database)  
are in agreement. (b) Comparison of intensive land use in both watersheds. 

(a) (b)
1 2 1 2

N

0	 5 km

Legend
STATSGO and SSURGO in agreement
STATSGO = “B”  SSURGO = “D”

Cultivated crops
Urbanized

Legend
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Table 6
Partial regression slope coefficients (n = 200 subwatersheds).

	 	 Model 1	 Model 2	 Model 3
	 	 distributed CN	 partially distributed CN	 lumped CN

Constant	 –0.019	 0.064	 0.042‡
PctLU*	 0.001	 –0.001	 –0.001‡
PctMCT†
	 T = A (D)	 0.026	 0.026	 0.018
	 T = A (C)	 0.016	 0.026	 0.020
	 T = A (B)	 0.005	 0.014	 0.017
	 T = B (D)	 0.018	 0.020	 0.023
	 T = B (C)	 0.011	 0.012	 0.011
	 T = C (D)	 0.008‡	 0.004‡	 0.004§
	 T = D (A)	 –0.025	 –0.013	 –0.016
	 T = D (B)	 –0.019	 –0.017	 –0.017
	 T = D (C)	 –0.007	 –0.007	 –0.006
	 T = C (A)	 –0.017	 –0.030	 –0.035
	 T = C (B)	 –0.011	 –0.012	 –0.012
	 T = B (A)	 –0.006	 –0.008	 –0.009
Note: CN = curve number. Dependent variable = STATSGO – SSURGO differential in predicted 
runoff (SSDiff) in centimeters per 7 cm rainfall event. Unless otherwise noted, coefficients are 
statistically significant at a 95% level of confidence.
* Explanatory variable. Combined percent aerial coverage of the five land use classes with the 
highest curve number values, as listed in table 2.
† Control variable. Percent aerial coverage, respectively, of each of 12 types of soil hydrologic 
group misclassification, T, where the first letter is the soil hydrologic group reported by STATSGO 
and the second letter (in the parentheses) is that reported by SSURGO.
‡ Significant at a 90% level of confidence.
§ Not statistically significant.

off in more heavily developed areas. For 
the distributed CN models (figure 4a and 
4c), the difference between STATSGO and 
SSURGO–based predictions (SSDiff) var-
ies little, increasing by 0.006 cm (0.002 in) 
or 1%, between subwatershed 1 and the 
more intensively developed subwatershed 2. 
When CN values are averaged across stream 
catchments (figure 4b and 4d), however, 
SSDiff decreases by 0.094 cm (0.037 in), or 
23%. That is, the STATSGO–based model 
underpredicts runoff to a greater extent in 
subwatershed 2, when the CN parameter is 
lumped. Many of the areas where STATSGO 
overestimates infiltration in subwatershed 2 
are characterized by low intensity land uses 
on poorly drained soils. These areas are often 
surrounded by more intensive uses on bet-
ter drained soils, where the STATSGO and 
SSURGO databases are more typically in 
agreement. When STATSGO–based curve 
numbers are spatially averaged across stream 
catchments, the original numbers in the less-
developed pockets, which are artificially low, 
cancel-out the higher curve numbers in their 
more intensively developed surroundings.

While this case study and the broader OLS 
regression analyses are cross-sectional, the 
results are relevant to future-oriented land-use 

planning. Assuming that future land conver-
sions will largely continue to occur near, but 
not directly in, pockets where STATSGO 
significantly overestimates infiltration, the 
use of STATSGO soils in lumped-parameter 
or partially distributed models has the poten-
tial to significantly underpredict the impact 
of such conversions on direct runoff. Across 
the full study area, 68% of the land charac-
terized by more intensive uses coincide with 
areas where STATSGO and SSURGO are 
in agreement, versus only 8% that coincide 
with areas classified as hydrologic group D in 
SSURGO but A or B in STATSGO. Many 
of the areas misclassified by STATSGO fol-
low stream networks (see, for example, figure 
3a), providing support for the earlier findings 
of Juracek and Wolock (2002) with respect 
to soil physical properties and proximity to 
streams. These results have implications for 
the use of STATSGO soils for land-use plan-
ning purposes in general, and in particular, 
for their use within partially distributed 
watershed modeling systems, such as SWAT.

Summary and Conclusions
This study has revealed a systematic, nega-
tive bias in STATSGO–based runoff 
models across the majority of Wisconsin 

relative to SSURGO. This bias is the result 
of the spatially generalized database’s wide-
spread overestimation of infiltration rates, as 
reflected in soil hydrologic group rankings. 
Based on previous comparative studies of 
STATSGO versus SSURGO–reported soil 
physical properties in Kansas (Juracek and 
Wolock 2002) and Colorado (Murray 2002; 
Murray and McCray n.d.), it appears likely 
that the bias revealed in Wisconsin exists in 
other regions of the United States as well. 
These findings may also be relevant in other 
parts of the world, where similar pairs of 
alternative small and large-scale soil databases 
are available (e.g., Romanowicz et al. 2005). 
Comparisons between modeled runoff and 
observations for the six gauged watersheds 
within the study area further suggest that 
SSURGO–based, distributed CN models 
are, on average, the most accurate of the vari-
ous combinations of the two databases and 
different levels of model aggregation—with 
STATSGO–based, lumped CN models typi-
cally producing the least accurate outputs.

While the different STATSGO as well as 
SSURGO–based uncalibrated models vari-
ably underestimated runoff under current 
conditions, this has limited bearing on their 
ability to predict relative changes associated 
with alternative land-use scenarios. Although 
it was not possible to test model accuracy in 
this regard through pretest/posttest experi-
ments, the results of cross-sectional OLS 
regression analyses of 200 randomly selected 
subwatersheds suggest that STATSGO–
based models will, on average, overpredict 
the impact of land conversions from lower 
intensity uses (e.g., forest and pasture) to 
higher intensity uses (e.g., cultivated crops 
and urban development). This finding, how-
ever, only holds for distributed CN models. 
The use of more common, partially dis-
tributed models (as well as fully lumped 
models) produces the opposite outcome, 
with STATSGO–based models predict-
ing less, rather than more, runoff in more 
intensively developed subwatersheds relative  
to SSURGO.

Taken as a whole, the implication of these 
findings is that two of the most common 
approaches to improving the computational 
efficiency of hydrologic and NPS pollution 
models—the use of lower resolution soils 
data and the lumping of model parameters—
combine to reduce the accuracy of modeled 
runoff under current conditions, while 
simultaneously underestimating the impact 
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Figure 4
Curve numbers (CNs) for distributed and partially distributed models in two subwatersheds (1 
and 2) with similar soil hydrologic conditions but different land-use intensities. (a) Soil Survey 
Geographic (SSURGO)–based, distributed CNs.* (b) SSURGO–based, partially distributed CNs.* 
(c) State Soil Geographic database (STATSGO)–based, distributed CNs.† (d) STATSGO–based, 
partially distributed CNs.†

(a) (b)
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0	 5 km Water

Legend

* Units of analysis = unique combinations of land use and soil hydrologic group.
† Units of analysis = stream catchments.
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of land-use change. With this in mind, 
developers and users of watershed modeling 
systems should carefully weigh the potential 
for systematic biases associated with the use 
of STATSGO data in their models against 
the additional time and resources needed 
to incorporate higher resolution SSURGO 
data. Special care should be taken when 
making this choice within land-use planning 
contexts, since a bias in the predicted impacts 
of alternative land-use scenarios can have sig-
nificant, long-term consequences. Given the 
now widespread availability of SSURGO and 
the continued advances being made in data 
storage and computer processing, it is hoped 
that the use of lower resolution STATSGO 
data will be phased out for models aimed at 
predicting the hydrologic impacts of pro-
posed or potential land-use change.
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