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Farmers are rapidly adopting various 
precision agriculture technologies (PAT), 
such as yield monitoring, variable-rate 
fertilizer applications, and remote sens-
ing tools (Griffin et al. 2008). Spatial and 
temporal variability in soil properties, plant 
characteristics, and crop yields can be used 
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Abstract: Precision agriculture technologies offer potential economic and environmental 
benefits from site-specific management of nitrogen (N) fertilizer and animal manure sources 
for corn (Zea mays L.). However, lack of knowledge and reliable methodology for developing 
and evaluating site-specific N fertilizer recommendations are the major obstacles for realizing 
these potential benefits. The objective of this study was to evaluate corn N status at the field 
scale and across many fields using late-season digital aerial imagery and the end-of-season 
corn stalk nitrate test in large-scale on-farm evaluation studies. About 30 groups of farmers, 
lead by agronomists and crop consultants, were formed across Iowa to evaluate different N 
management practices. Late-season color digital aerial imagery and digital soil maps were 
used to guide the collection of the corn stalk nitrate test samples within 683 cornfields in 
2006, 824 fields in 2007, and 828 fields in 2008. Four areas—one from each of the three 
predominant soil types and one within a target-deficient area—were sampled in each field. 
Multilevel binary logistic regressions were used to quantify the relationship between green 
reflectance of the corn canopy and corn N status, expressed as deficient and sufficient (a com-
bination of marginal, optimal, and excessive categories of the corn stalk nitrate test), within 
and across the fields. Percentages of areas within fields with deficient and sufficient N status 
were estimated using distributions of pixel counts of green reflectance of the corn canopy. 
Multiple regression analysis was used to identify factors affecting percentage-deficient area 
within the fields. Results showed that N management category (a combination of N form 
and timing of application) and early season rainfall (May, June, or cumulative from March 
through June) had the largest effects on percentage-deficient area. Fields with liquid swine 
manure applied in the fall or urea-ammonium nitrate solution applied in the spring (before 
planting) or urea-ammonium nitrate solution applied at sidedress had larger areas of N defi-
ciency than fields with anhydrous ammonia applied in the spring. Larger early season rainfalls 
also increased percentage-deficient area during each year. The results of large-scale evaluations 
can be used to develop more accurate site-specific N recommendations based on knowledge 
of differences between management practices and effects of soil properties and rainfall on N 
status within fields. Future evaluations can identify areas that persistently have excessive N 
status and quantify potential N fertilizer reductions within those areas or fields.

Key words: adaptive management—corn stalk nitrate test—digital aerial imagery—nitrogen 
management—precision agriculture technologies—spatial variability

to guide applications of commercial fertiliz-
ers, lime, and animal manure sources tailored 
to individual fields or areas within fields. 
However, a great expectation that the use of 
PAT would substantially increase profitability 
and rapidly minimize the offsite impact of 
corn (Zea mays L.) production under rainfed 

conditions of the US Midwest has not been 
completely realized.

The limited success of adopting and using 
PAT for nitrogen (N) fertilizer management 
for corn occurs for several reasons (Blackmer 
and White 1998; Hansen et al. 2004; Hatfield 
2000; Kyveryga et al. 2011a; Massey et al. 
2008; Sawyer et al. 2006; Scharf et al. 2005; 
Schepers et al. 2004): (1) the general nitro-
gen fertilizer recommendations (GNFR) 
or best management practices based on 
field averages are not adequate for making 
site-specific (e.g., variable) N fertilizer pre-
scriptions; (2) the majority of GNFR have 
a limited amount of calibration and support 
data, which is mostly collected in controlled 
small-plot experiments that often do not 
represent farmers’ common management 
practices (e.g., types and width of fertilizer 
application equipment, forms of commercial 
fertilizer and animal manure); (3) the majority 
of GNFR are based on estimating field-
average economically optimal N fertilizer 
rates without considering possible differ-
ences between timing, forms, and methods 
of fertilizer and animal manure applications; 
(4) the majority of GNFR ignore the large 
uncertainty when predicting the amount of 
N potentially available to the plants from the 
soil, fertilizer, and animal manure sources; (5) 
the majority of GNFR do not consider large 
temporal variability in amount of rainfall and 
large spatial variability in observed N losses 
within fields; and (6) there is growing evi-
dence that researchers need a reliable and 
practical methodology for developing and 
evaluating various site-specific N fertilizer 
recommendations using on-farm studies.

Faced with these challenges and pos-
sible environmental regulations when using 
animal manure and commercial fertilizer 
sources, farmers across Iowa began forming 
groups to evaluate N management practices 
on their farms utilizing PAT (Blackmer and 
Kyveryga 2010; Ostermeier 2007; Van De 
Woestyne 2005). The primary focus of these 
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on-farm evaluations was to assess the eco-
nomic effect of reducing farmers’ normal N 
fertilizer rates by about one-third in field-
scale on-farm replicated strip trials. Farmers 
used global positioning systems (GPSs) and 
guidance systems to record locations of the 
N fertilizer treatments within fields and to 
combine yield-monitoring systems with 
GPS to record harvested yields. Also, late-
season digital aerial imagery (DAI) was used 
to verify treatment locations, to identify 
possible application and other management 
errors within fields, and to visually assess the 
magnitude of yield differences between the 
two N rates studied. The secondary focus 
of these on-farm evaluations was to enable 
individual growers to evaluate the current N 
management practices and the performance 
of any GNFR developed by land-grant uni-
versities or private industry. Such evaluations 
would allow researchers from public and 
private institutions to use, pool, and analyze 
the data from many groups of farmers and 
to identify management and environmental 
factors that are important for developing and 
fine-tuning site-specific N recommendations 
for different geographic areas.

On-farm evaluations with two N fertilizer 
treatments conducted in Iowa fall under the 
general umbrella that is called adaptive man-
agement. The adaptive management concept 
is based on evaluations of biological systems 
or processes that are characterized by large 
variability, uncertainty, and complex manage-
ment (Holling 1978; Lee 1993; Walters and 
Hilborn 1978). In general, adaptive manage-
ment can be described as a cycle of at least 
six repeated steps: (1) identifying a critical 
management problem; (2) designing a simple, 
practical, and efficient experiment or policy 
to study the problem; (3) conducting the 
experiment or implementing the policy; (4) 
evaluating the outcomes; (5) learning from 
the outcomes; and 6) adjusting management 
based on the observed outcomes.

The fundamental difference between 
adaptive management studies at the field 
scale in agriculture and controlled small-plot 
experiments is that the former are based on 
farmers’ participatory learning. This means 
that group members conducting on-farm 
evaluations—farmers, consultants, along 
with scientists and other stakeholders—iden-
tify the most critical management problems 
and agree that the problems are legitimate 
problems (Pahl-Wostl et al. 2007) that can be 
solved by conducting on-farm evaluations. 

Also, farmers and local agronomists working 
in an adaptive management framework are 
solely responsible for conducting on-farm 
experiments by applying treatments within 
their fields, harvesting the crop, making crop 
phenological observations, following quality 
control protocol, and collecting the essential 
management information, whereas farm-
ers involved in small-plot studies are not 
involved in applying treatments or making 
observations about the treatments. Farmers 
in adaptive management studies also use their 
normal management practices, corn hybrids, 
and application equipment. They own the 
data, but summaries of individual evaluations 
not identifiable by farmer are publicly avail-
able (ISA 2010). The analysis of data and the 
decision support system for adaptive man-
agement evaluations also differ from that of 
controlled small-plot experiments as adaptive 
management studies offer more practical and 
management-oriented decision support sys-
tems that can be used for better predictions 
of management outcomes under uncertainty 
(Neyberg et al. 2006).

While yield monitoring and GPS tech-
nology can be effectively used in on-farm 
evaluations, a large percentage of farmers 
across the Midwest use yield monitoring 
technology without analyzing the observed 
data (Griffin et al. 2008). To engage farmers 
in on-farm evaluations, a special program 
was developed to collect feedback informa-

tion about the N status from many cornfields 
across Iowa (Kyveryga et al. 2010). The pro-
gram was based on using late-season DAI of 
corn canopy and digital soil maps to guide 
the collection of corn stalk nitrate test 
(CSNT) samples within fields. The CSNT is 
based on measuring late-season N sufficiency 
(the supply relative to the demand) or corn 
N status before the harvest. The test provides 
feedback in N status that can be used for 
assessing whether N management (i.e., N 
rate, timing, form, or method of application) 
was optimized or not in a given year. The 
high accuracy of the CSNT for diagnosing 
the N status of corn in the near-optimal and 
excessive categories has been confirmed in 
several studies conducted across the Midwest 
(Balkcom et al. 2003; Brouder et al. 2000; 
Wilhelm et al. 2005; Yang 2000). The DAI 
has a high sensitivity for diagnosing the 
deficient or below-optimal N status of corn 
(Blackmer et al. 1996; Hatfield et al. 2008).

Two years of on-farm evaluations using 
DAI and CSNT across Iowa identified sig-
nificant differences in the field-average N 
status between five management practices 
based on forms and timing of fertilizer N 
and manure applications, the previous crop, 
and tillage practices (Kyveryga et al. 2010). 
A follow-up analysis showed how DAI used 
in the evaluation studies was processed, 
enhanced, and normalized to predict the 
field-average N status across many corn-

Figure 1
Locations of 683 cornfields sampled in 2006, 824 in 2007, and 828 fields in 2008 across Iowa 
for the late-season evaluations of corn nitrogen status using digital aerial imagery (DAI) and 
corn stalk nitrate testing (CSNT). Eight landform areas are shown on the map.

Legend
2006
2007
2008

Des Moines Lobe

C
opyright ©

 2011 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 66(6):373-385 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


375NOV/DEC 2011—VOL. 66, NO. 6JOURNAL OF SOIL AND WATER CONSERVATION

fields (Kyveryga et al. 2011b).  In addition to 
knowing the field-average N status of corn, 
growers, agronomists, technical providers, 
and conservation specialists are often inter-
ested in evaluating corn N status spatially 
within individual fields. After observing large 
spatial variability in DAI, participants of on-
farm evaluations often request estimates of 
the size of the area that is deficient, sufficient, 
or excessive within cornfields; and identify 
the major factors (including form and timing 
of N application, rainfall amount, and others) 
that affect spatial variability of the N status 
within cornfields.

The objective of this study was to dem-
onstrate the combined use of late-season 
DAI and CSNT for evaluating corn N sta-
tus within fields and across many fields in 
on-farm evaluation studies conducted across 
Iowa during three years. Specifically, we 
attempted to develop a method for calibrat-
ing corn canopy characteristics to CSNT 
outcomes to estimate the percentage area 
with a different N status within cornfields.

Materials and Methods
The study included collecting late-season 
DAI and CSNT samples from 683 cornfields 
across Iowa in 2006, 824 fields in 2007, and 
828 fields in 2008 (figure 1). At least two 
fields were sampled in each county during 
the study. About 30 groups (see clusters on 
the map) were formed across the state. Each 
group had 10 to 25 farmers and was led by 
a local commercial agronomist or indepen-
dent crop consultant. The group leader was 
partially responsible for identifying poten-
tial fields for evaluations, delineating field 
boundaries, collecting management infor-
mation from farmers, sampling the fields, and 
organizing group meetings to discuss DAI 
imagery and CSNT results. More specific 
information about management practices, 
total N rates applied with manure and com-
mercial fertilizers, and differences between 
field average corn N status for different N 
management categories (N forms and timing 
of N application) were discussed elsewhere 
(Kyveryga et al. 2010)

Imagery Collection and Processing. The 
late-season DAI was collected in late August 
or early September. This time of imagery col-
lection in Iowa coincides with the time when 
N stress in corn is the most pronounced as 
plants deplete the soil and fertilizer N sup-
plies. Four 12-bit digital cameras with a 
charge coupled display array of 1,600 × 

Figure 2
An example of late-season digital color (red, green, and blue bands) aerial imagery of the corn 
canopy used in on-farm evaluations of nitrogen status across Iowa. Corn stalk samples 1, 2, and 
3 were collected within three predominant soil types to characterize the average field nitrogen 
status. Corn stalk sample 4 was collected within an area that looked deficient or yellow. Sample 
1 for this field tested optimal, sample 2 deficient, sample 3 optimal, and sample 4 deficient. 
Soil type map labels are as follows: Clarion (138B and 138C2), Nicollet (55), and Webster (107).
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1,200 were used to collect the imagery. The 
imagery was taken from a height of about 
2,400 m (7,920 ft) above the ground. During 
a flight, about twenty individual images were 
taken from each field. Then these individual 
images were composed or mosaiced into one 
8-bit, georeferenced, tonally balanced image 
with a spatial resolution of about 1 m (3.3 ft). 
The raw mosaiced imagery had four spec-
tral bands: blue (410 to 490 nm), green (510 
to 590 nm), red (610 to 690 nm), and near 
infrared (800 to 900 nm). Each image was 
orthorectified by using the US Geological 
Survey 7.5 minute digital elevation models.

The imagery was not radiometrically cor-
rected to absolute reflectance values, meaning 
that the reflectance values across the fields 
were not normalized. Therefore, this made 
it difficult to compare the absolute canopy 
reflectance values across many fields. To par-
tially normalize reflectance values across the 
fields and remove the overwhelming effects 

of light scattering from nearby roads and 
buildings, the imagery was enhanced by 
extending the dynamic range of each spec-
tral band using ERDAS Imagine Software 
(ERDAS, Norcross, Georgia). The image 
enhancement increased the range in reflec-
tance between the darkest and the lightest 
part of the imagery and allowed identification 
of more distinct visual differences of the corn 
canopy. Kyveryga et al. (2011b) described the 
effects of the imagery enhancement on the 
ability of the image spectral characteristics 
to predict the field-average N status across 
many fields within a year.

Corn Stalk Nitrate Sample Collection. 
Color (red, green, and blue bands) DAI was 
overlaid with a digital soil map to select four 
sampling locations for CSNT within each 
field (figure 2). Three corn stalk samples 
were collected within three predominant soil 
types (based on their area within the fields) 
to characterize the field-average N status. 
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The fourth sample was collected within the 
area that appeared to be the most N defi-
cient, with lighter or less green or more 
yellow color of corn canopy. This target-
deficient sample was collected to confirm 
that the more yellow color (less plant chlo-
rophyll concentration) of corn canopy was 
associated with N deficiency but not with 
other plant stresses, such as lack or excessive 
soil moisture, herbicide injury, or early corn 
senescence. Coordinates for the selected sam-
ple locations were uploaded to a hand-held 
GPS that was used to navigate within fields. 
To verify exact sampling locations, coordi-
nates were recorded after the samples were 
collected within a field.

Stalk samples were collected from two to 
five weeks after corn grain reached physiolog-
ical maturity or black layer stage. Ten 20 cm 
(8 in) stalk segments (15 cm [6 in] above the 
ground) were cut within each sampling area 
(Blackmer and Mallarino 1996) that included 
two corn rows extending for about 10 to 12 
m (33 to 40 ft). The collected samples were 
analyzed for stalk nitrate nitrogen concentra-
tions with a Lachat flow-injection analyzer 
(Lachat Instruments, Milwaukee, Wisconsin).

The late-season CSNT was developed to 
diagnose N sufficiency (N supply relative to 
N demand) or corn N status (Binford et al. 
1990; Binford et al. 1992). The test results are 
reported as four nitrate nitrogen sufficiency 
categories: deficient (<250 mg kg–1), mar-
ginal (250 to 700 mg kg–1), optimal (700 to 
2,000 mg kg–1), and excessive (>2,000 mg 
kg–1). The deficient category suggests low N 
availability from the soil and fertilizer sources, 
resulting in a high probability of economic 
yield loss from the N deficiency. The mar-
ginal category suggests that economic yield 
responses from additional N applications 
would be equally likely. The optimal cat-
egory indicates that the N supply matched 
the corn N demand and the relatively low 
probability of yield response to additional N. 
The excessive category suggests that the N 
supply exceeded the plant N demand.

Stalk nitrate concentrations were expressed 
as N sufficiency categories in statistical anal-
yses because the nitrate concentrations were 
not normally distributed (Kyveryga et al. 
2011b) and because CSNT was developed 
as a qualitative categorical diagnostic tool 
(Binford et al. 1990; Binford et al. 1992).

Digital Aerial Image and Statistical 
Analyses. To calibrate image characteristics 
to the observed CSNT outcomes within each 

field, canopy reflectance values were extracted 
for blue, green, red, and near-infrared bands of 
the corn canopy reflectance for each sampling 
area (figure 2) using ArcGIS Desktop 9.3.1 
(Environmental Systems Research Institute, 
Redlands, California). First, a buffer of 5 m 
(16.5 ft) in a diameter was created around 
each sampling point. Then, we used the Zonal 
Statistics tool of Spatial Analysis to build a 
geographical information system model that 
extracted image reflectance values from many 
images at a time. Mean reflectance values for 
each band from each sampling location were 
combined into one dataset using the Append 
Tool of ArcGIS.

A unique challenge when trying to cali-
brate the imagery to CSNT outcomes was 
that some fields were flown on different dates, 
and corn hybrids were not the same across all 
fields. The different hybrids often have differ-
ent spectral characteristics of the corn canopy. 
Although the image enhancement procedure 
had partially normalized the reflectance val-
ues within and across fields sampled within 
each year (Kyveryga et al. 2011b), complete 
pooling of the data across all fields would not 
be sufficient for accurately predicting corn 
N status spatially within cornfields.  Another 
challenge was that establishing a reliable 
relationship between image reflectance char-
acteristics and stalk test outcomes would 
be difficult because only four calibration 
points (four values for reflectance and four 
categorical values for CSNT) could be used 
within each field. We used a multilevel binary 
logistic regression approach (BLR) to avoid 
complete pooling of the data and ignor-
ing within-field variation or using a limited 
number of observations within each field.

Multilevel (hierarchical or random effects) 
models are effective for modeling relation-
ships between variables that are structured 
or nested in many groups or observed at 
different levels or scales (Gelman and Hill 
2007; McMahon and Diez 2007). This type 
of analysis deals with various sources of 
variation at different scales. For multilevel 
regressions, model parameters (i.e., intercepts 
and slopes) can vary within each group for 
the lower level, and these regression param-
eters are modeled simultaneously with the 
model parameters for the higher level or 
hierarchy. The upper level model parame-
ters, known as hyperparameters, are assigned 
a probability distribution or a probability 
model with some parameters (e.g., mean and 
standard deviation) that are directly related or 

connected to the parameters of regressions 
within groups of the lower level. Simply, the 
hyperparameters for the upper level regres-
sion are being modeled using the data at the 
lower level, and the hyperparameters control 
the parameters for the lower level regres-
sions. The multilevel regression analysis is 
sometimes called partial pooling regression 
because it provides a compromise between 
complete pooling and no-pooling data anal-
yses (Gelman and Hill 2007).

The general multilevel BLR in our analy-
sis had two levels: within-field regression that 
modeled within-field variation, that is varia-
tion among individual sampling areas within 
a field; and field-level regression that mod-
eled variation across all fields sampled in the 
state within a year. Parameters for the field-
level model were estimated as averages of 
the parameters from the within-field models. 
Within-field variation was taken into account 
at the same time when estimating field-level 
(the average across all fields) regression coef-
ficients, whereas the between-field variation 
was accounted for when estimating regression 
coefficients for within-field level models.

Because corn hybrids were not the same 
across all fields and some fields were flown 
on different dates, intercepts and slopes for 
within-field level models were set as random 
factors, which means that the intercepts and 
slopes varied by fields (figure 3). The two 
response categories used in the BLR were 
deficient and sufficient (a combination of 
marginal, optimal, and excessive categories of 
CSNT). The sufficient category was used as a 
reference category in BLR, meaning that the 
vertical axis indicated the probability to test 
in the sufficient category of N status.

Reflectance of individual bands and sev-
eral vegetative indices (data not shown) were 
used as predictor variables in multilevel BLR. 
We used the Akaike Information Criteria to 
identify the best predictor variable in multi-
level regressions, with smaller values for the 
statistics indicating the better predictors. A 
preliminary analysis showed that BLR with 
green reflectance as a predictor had a larger 
predictability of binary N status than regres-
sions with red, blue, near-infrared reflectance, 
or other commonly used vegetation indices 
(data not shown). Thus, further results and 
discussions were focused on green reflec-
tance of the corn canopy. Multilevel model 
parameters were estimated using the lme4 
package (Bates and Maechler 2010) for the 
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Figure 3
An example of using multilevel binary logistic regressions (BLR) to calibrate green reflectance values of late-season digital aerial imagery (DAI) of 
the corn canopy to observed nitrogen (N) status, expressed as deficient and sufficient, within four of 683 cornfields evaluated in 2006. The field IDs 
of the four fields are (a) 2006AGRI01, (b) 2006BAND04, (c) 2006AGRI05, and (d) 2006NC069. The within-field level model, shown as solid lines, had 
intercepts and slopes that varied within fields because different corn hybrids were planted across the fields and some fields were flown on different 
dates. The field-level (statewide) model, shown as dash lines, indicates the average relationship across all fields within a year. The within-field level 
model predicted the relationship even as four observations within a field were tested in the same binary response category of corn N status because 
intercepts and slopes were random, meaning that the intercept and slope for each field represented a sample from a larger population of all poten-
tial reflectance values. 
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R Statistical Program (R Development Core 
Team 2004).

To correctly separate deficient samples 
from sufficient, we estimated critical green 
reflectance values by using the estimated 
intercept and slope values calculated for each 
field. A cutoff probability was set as 0.51. 

Thus, stalk samples were predicted as defi-
cient if the probability to test sufficient was 
<0.51 and as sufficient if the corresponding 
probability was >0.51 (figure 3). The agree-
ment between the predicted and observed 
categories in the binary N status of corn was 
tested by calculating the percentage of cor-

rect prediction and the Cohen Kappa Index 
(Cohen 1960). The Cohen Kappa Index 
makes adjustments for randomness when 
checking the agreement between predicted 
and observed categories. We used the “con-
cord” package of the R statistical software to 
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estimate Cohen Kappa Index values (Lemon 
and Fellows 2009).

To calculate percentage area that was pre-
dicted deficient or sufficient within each 
field, distributions of pixel count values for 
green reflectance were derived in ArcGIS 
software using the Tabulate Area and Table 
Select tools of Spatial Analysis. The criti-
cal green reflectance values estimated by 
multilevel BLR were used to classify the 
distributions of pixel count values into defi-
cient and sufficient categories (figure 4). 
Fields were not used if they had more than 
one corn hybrid or other visual problems 
not related to N management or if they had 
several waterways, buffer strips or terraces 
that we could not mask in ArcGIS because 
of their complex spatial patterns within the 
fields. The same criteria were applied to fields 
that had several flooded or replanted areas. 
The percentage of fields not used was 17% in 
2006, 43% in 2007, and 31% in 2008.

Multiple regression analysis was used to 
estimate the effect of several predictor vari-
ables on the percentage of deficient area 
within fields in each year. The predictor 
variables studied include N management 
category (a combination of the form and 
timing of fertilizer and manure applications), 
monthly average rainfall, cumulative spring 
or summer rainfall, total N rate applied, pre-
vious crop, field size (ha), and date of taking 
the DAI. Predictors that were not statistically 
significant at p < 0.1 level were dropped 
from the final regression model, except for 
the total N rate.

To determine whether the size of deficient 
area varied among major soil types within 
fields, pixel count distributions for the green 
band were extracted for each soil type in all 
fields sampled within the Des Moines Lobe 
Landform Area (figure 1). Critical reflectance 
values derived for each field (figure 3) were 
used to estimate the percentage of deficient 
and sufficient areas for each soil type within 
each field. Two hundred seventeen fields 
were analyzed for the 2006 data, 126 fields 
were analyzed for the 2007 data, and 185 
fields were analyzed for the 2008 data. Only 
mean percent deficient areas for Clarion, 
Nicollet, Canisteo, Webster, and Okoboji soil 
types were summarized. These soil types were 
selected because they covered the majority of 
the area within the selected fields and because 
they represent the two most common soil 
associations (Clarion-Nicollet-Webster and 
Canisteo-Nicollet-Webster) for the central 

Figure 4
An example of estimating the critical reflectance value for separating deficient and sufficient 
areas in corn nitrogen status. Percent deficient and percent sufficient areas were estimated 
based on the distribution of pixel counts of green reflectance of the corn canopy in each field. 
This is the same field as the one shown in figure 2. 
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Iowa. An analysis of variance was performed 
to estimate the effect of the major soil types, 
the previous crop, and their interactions with 
the percent-deficient area in each year.

Spatially interpolated monthly average 
rainfall data (4 km [13,200 ft] grids) were 
downloaded from the Iowa Environmental 
Mesonet, Agronomy Department, Iowa 
State University (ISU 2009). Each field was 
assigned a rainfall value from the rainfall grid 
located nearest the field sampled. Digital soil 
maps (1:12000 the mapping scale) for each 
county were downloaded from the Iowa 
Cooperating Soil Survey (Iowa Cooperating 
Soil Survey 2003).

Results and Discussion
Relating Imagery to Corn Nitrogen Status. 
Figure 3 illustrates how multilevel BLRs 
were used to calibrate green reflectance of the 
corn canopy to observed deficient (shown as 
0) and sufficient (shown as 1) categories of 
corn N status. Based on within-field model 
predictions, the solid lines show the prob-
ability of having sufficient N status as the 
green reflectance increased or as the corn 
canopy became more yellow or lighter in 
color on the imagery.  The dashed line shows 
the field-level model, which predicts the 
weighted-average probability to test suffi-
cient in N status across all fields within a year. 

The intercept and slope for the field-level 
model were estimated as averages of inter-
cept and slope values of the multilevel model 
applied for a sample of 683 fields evaluated 
in 2006. For the within-field level model, the 
intercept and slopes varied by fields to make 
adjustments for different hybrids planted and 
different dates and timing of taking DAI.

Only four fields of 565 are shown in figure 
3 to illustrate two different situations when 
the observed N status was both deficient and 
sufficient (figures 3c and 3d) or either defi-
cient or sufficient (figures 3a and 3b) within a 
field. Because multilevel regressions are based 
on partial pooling of data and because inter-
cepts and slopes were set as random effects 
(i.e., they represented a sample from a larger 
population of all potential reflectance val-
ues of the corn canopy within fields), model 
parameters were estimated even if all four 
stalk samples collected within a field (figure 
2) were tested in one of the two binary cat-
egories of N status (figure 3a and 3b).

The probability of being measured as 
sufficient decreased as green reflectance val-
ues increased (figure 3), suggesting that the 
lighter color on the imagery indicated corn 
N deficiency.  The average slope values across 
all fields (the field-level model) within a year 
are shown in table 1. The average slopes were 
negative and were almost the same magni-
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Table 1
Summaries of field-level (statewide) multilevel binary logistic regression (BLR) (averages across all fields within a year) predicting percentage  
area with deficient and sufficient corn N status using green canopy reflectance of late-season digital aerial imagery (DAI). The sufficient category 
was used as a reference in BLR, meaning that negative slopes indicate the lower probability of testing sufficient with an increase in the canopy 
reflectance or increase in yellow or lighter color on the imagery.

					     Correct
					     prediction of	 Cohen
	 Number	 Intercept	 Slope	 Total correct	 deficient N	 Kappa
Year	 of fields	 (standard error)	 (standard error)	 prediction (%)	 status (%)	 Index

2006	 683	 5.43 (0.40)	 –0.0340 (0.0032)	 89	 71	 0.57
2007	 824	 5.95 (0.46)	 –0.0591 (0.0039)	 86	 93	 0.65
2008	 828	 3.74 (0.27)	 –0.0372 (0.0023)	 89	 90	 0.76

tude among all the years. For example, with 
one unit increase in green reflectance, the 
probability of being measured as sufficient 
decreased by 3% in 2006 and in 2008 and 
decreased by 6% in 2007. Estimated stan-
dard errors for the average slope values for 
the field-level models were about 10 to 15 
times smaller than their corresponding slope 
estimates, indicating that the slopes had rela-
tively narrow confidence intervals (data not 
shown), despite the fact that the fields varied 
greatly in the observed N status and corn 
canopy characteristics.

The multilevel BLR correctly predicted 
89% of observations in 2006 and 2008 and 
predicted 86% of observations in 2007 (table 
1). These estimates were about 20% to 25% 
higher than similar predictions using an ordi-
nal BLR fit to the complete pooled data (i.e., 
ignoring differences within the fields) within 
a year (data not shown). This suggests that 
the multilevel BLR analysis had an advantage 
compared with the analysis based on com-
plete pooling of data across all fields within a 
year. The relatively high predictability (>86% 
correct predictions) of the multilevel BLR 
(table 1) was confirmed also by the high 
Cohen Kappa Index values, which make 
adjustments for random chance in the agree-
ment between the predicted and observed 
categories of binary corn N status.

Deficient and Sufficient Areas within 
Fields. The critical reflectance values that 
separated sufficient and deficient samples are 
shown as dashed lines in figure 3. Based on 
the within-field model, samples that had the 
predicted probability <0.51 were classified as 
deficient; those with the probability >0.51 
were classified as sufficient. Because fields 
had stalk samples with different observed N 
statuses and different corn hybrids planted, 
the estimated critical reflectance ranges also 
varied greatly among fields and years. For 
example, a mean critical range for green 
reflectance for all fields was 155 with a coef-
ficient of variation of 32% in 2006, 100 with 

a coefficient of variation of 21% in 2007, and 
109 with a coefficient of variation of 54% 
in 2008.

The estimated critical ranges were used to 
estimate the size (%) of predicted deficient 
and sufficient areas within fields using pixel 
counts of green reflectance of corn canopy. 
Pixel count distributions were derived for 
each field (figure 4). Some fields were not 
used in the analysis because they had more 
than one corn hybrid, had many waterways, 
buffer strips, or flooded areas, or had visually 
identified management problems that were 
not related to N. The area on the left from 
the critical range (darker green color on the 
imagery) was considered sufficient; the area 
on the right from the critical range (lighter 
green color on the imagery) was considered 
deficient. For example, the field with ID 
2008045 shown in figure 2 had 34% of the 
total area predicted as deficient and 66% of 
the total area predicted as sufficient (figure 4).

Because farmers commonly estimate their 
optimal N rates based on various field-aver-
age GNFR systems, the percent-deficient 
area within a field may indicate (1) underap-
plication of N fertilizer or animal manure, (2) 
application errors (e.g., fertilizer skips), (3) 
nonuniformity of fertilizer and manure appli-
cations, (4) variable N losses due to leaching 
and denitrification, and (5) other factors that 
reduce N availability within fields.

A summary of the percentage area pre-
dicted as deficient within fields is shown as 
a box plot for each year (figure 5). The dif-
ferences among the years are striking. Based 
on medians, about 60% of the total area was 
predicted deficient in 2008, about 50% in 
2007, but only about 1% in 2006. A partial 
reason for these large differences could be in 
the different amounts of rainfall received in 
each year. For example, in 2006, the average 
monthly rainfall in May, June, and July was 
about 50% less than the long-term monthly 
average rainfalls during those three months 
across the state (figure 6). In contrast, in 2008, 

the average monthly rainfall was above nor-
mal in April, May, June, and July. Specifically, 
fields evaluated in 2008 received about twice 
as much rainfall in June, compared with the 
long-term average June rainfall. As a result, 
many cornfields across the state had saturated 
soils or had standing water for several days 
or weeks in June and July of 2008. In 2007, 
rainfall in May and August was also above 
the 30 y average. Thus, the large percentage 
of N-deficient areas within the fields could 
be partially explained by N losses due to 
leaching and denitrification in relatively wet 
2007 and extremely wet 2008. As indicated 
by larger interquartile ranges for these two 
years, compared with that in 2006 (figure 5), 
the above-average early season rainfall in 2007 
and 2008 also increased within-field variabil-
ity in the percent-deficient area within fields.

The mean percent-deficient area for fields 
evaluated in 2006 was about 20% higher 
than the median percent-deficient area (fig-
ure 5). Although the median deficient area 
was almost 0%, some fields had relatively 
large areas (>80%) predicted as deficient in 
2006. These large areas with N-deficient 
status within some fields could be due to 
(1) a poor fit of the multilevel BLR to the 
observed data, (2) problems with the DAI 
(e.g., the imagery was taken too late and corn 
plants might have begun senescence, which 
changed their canopy reflectance character-
istics or there might be problems with the 
digital cameras used to acquire the imagery, 
(3) management problems not related to N 
(e.g., herbicide injury or drought stress) that 
were not identified in the preliminary visual 
exploratory analysis of DAI, or (4) factors 
related to N management or soil characteris-
tics that decreased N availability or increased 
N losses within those fields.

Factors that Affected Percent-Deficient 
Area. To identify factors that affected the 
percent-deficient area within fields, we con-
ducted a multiple regression analysis where 
predictor variables were (1) average monthly 

C
opyright ©

 2011 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 66(6):373-385 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


380 JOURNAL OF SOIL AND WATER CONSERVATIONNOV/DEC 2011—VOL. 66, NO. 6

Median

Mean

Figure 5
Box plots summarizing percent-deficient area within 565 cornfields evaluated in 2006, 473 in 
2007, and 573 in 2008. Fields were not used in the analysis if they had more than one corn hy-
brid planted, problems not related to N management, many water ways, buffer strips, or  
flooded areas. Whisker bars indicate 5th and 95th percentiles and boxes indicates 25th and  
75th percentiles.
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rainfall or spring cumulative rainfall (cm), (2) 
field size (ha), (3) total N rates applied with 
commercial N and animal manure (kg N 
ha–1), (4) date the DAI was taken (days after 
August 15), (5) the previous crop (corn or 
soybeans), and (6) the N management cat-
egory. The N management categories were 
created by combining the major forms and 
timing of N fertilizer and manure applica-
tions. We used only those categories in the 
analysis that had >3% of fields from the total 
number of fields evaluated during each year. 
The N management categories were (1) 
AA Fall (fall-applied anhydrous ammonia), 
(2) AA Spring (spring-applied anhydrous 
ammonia), (3) Swine Fall (fall-injected swine 
manure), (4) UAN SD (sidedress UAN), 
and (5) UAN Spring (spring-applied urea-
ammonium nitrate solution).

Parameters for the best multiple regression 
model for each year are summarized in table 
2. The best regression model for the the 2006 
data explained 8% of the total variation in 
predicted percent-deficient area. Date of tak-
ing the imagery, field size, the previous crop, 
and interaction between N management 
category and the previous crop were not 
statistically significant, but N management 
category, total N rate applied, and rainfall in 
June had statistically significant effects (p < 
0.1). While all other factors were held con-
stant, each additional 1 cm (0.39 in) of rainfall 
in June increased the percent-deficient area 
by about 1.5%, and each additional 10 kg N 
ha–1 (9 lb N ac–1) applied with commercial N 
and liquid swine manure decreased percent-
deficient area by 1.6%.

Comparisons between N management 
categories for the 2006 data are shown in 
figure 7a. Because the effect of the previous 
crop and an interaction between N manage-
ment category and previous crop were not 
statistically significant, corn-after-corn and 
corn-after-soybean fields were combined in 
one group to compare the N management 
categories. Fields receiving AA Fall and AA 
Spring, as one group, had a statistically sig-
nificant (p < 0.1) lower percent-deficient 
area than fields receiving Swine Fall, UAN 
SD, and USN Spring, as the other group. The 
sidedress applications of UAN had the largest 
percent-deficient area. This can be partially 
explained by the unusual dry conditions in 
May and June during sidedress UAN applica-
tions (figure 6). It is likely that N sidedressed 
as UAN in 2006 was unavailable for plant 
uptake or that it was partially immobilized 

Figure 6
Monthly average rainfall for fields evaluated during three years and 30 y average monthly  
rainfall across Iowa.
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Figure 7
Mean percentage area predicted as deficient in corn nitrogen (N) status within fields for five N 
management categories (a combination of forms and timing of N fertilizer and animal manure 
applications) in (a) 2006, (b) 2007, and (c) 2008. Only management categories that had >3% of 
samples from the total number of samples were used in the analysis.

Notes: AA Fall = fall-applied anhydrous ammonia. AA Spring = spring-applied anhydrous  
ammonia). Swine Fall = fall-injected liquid swine manure. UAN SD = sidedress urea-ammonium 
nitrate solution. UAN Spring = spring-applied, preplant UAN.
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by crop residues, especially in fields planted 
to corn after corn (figure 7a). These obser-
vations partially explained why some fields 
had a relatively large percent-deficient area 
in relatively dry 2006 (figure 5).

The best multiple regression model for the 
2007 data explained 13% of the total varia-
tion in the size of deficient area. Only effects 
of N management category, previous crop, 
and their interactions were statistically signif-
icant. The effect of total N rate was negative, 
and the effect of May rainfall was positive, 
suggesting that N losses also increased with 
more rainfall in May.

Comparisons between N management 
categories for the 2007 data are shown in 
figure 7b. For all N management categories, 
except AA Fall, corn after corn had a smaller 
percentage of deficient area than corn after 
soybean. For corn after soybean, AA Fall and 
AA Spring (as one group) had a statistically 
significant (p < 0.1) smaller percent-deficient 
area than Swine Fall, UAN SD, and UAN 
Spring (as the other group). These differ-
ences among the categories can be partially 
explained by differences in N losses attrib-
uted to different N forms and to different 
timing of the nitrogen application. Fields that 
received UAN SD had the largest percent-
deficient area. This finding is not surprising 
because UAN has 25% nitrate-nitrogen, 
which can be leached with heavy rainfalls 
immediately after UAN applications.

It is important to note, however, that the 
average total N rates applied with the com-
mercial N sources and with liquid swine 
manure among the N management cat-
egories were different in 2007. For example, 
fields with UAN sidedress and UAN Spring 
applications received, on average, 140 to 150 
kg N ha–1 (125 to 134 lb N ac–1), which was 
approximately 10 kg N ha–1 (9 lb N ac–1) 
less than those with AA Spring applica-
tions. The Swine Fall and AA Fall categories 
received, on average, about 200 kg of total 
N ha–1 (179 lb ac–1) for corn after soybean. 
Despite the higher N rates applied, injected 
swine manure applications had the largest 
percent-deficient area. The last finding can 
be explained by potentially large N losses 
within fields that received liquid swine 
manure and the uncertainly in N availabil-
ity from the organic fraction of the manure 
(Balkcom et al. 2009; Hansen et al. 2004). 
These data suggest the need for large-scale 
studies to evaluate N availability from swine 
manure in the Midwest. Such studies are 
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needed because states in the Midwest use 
different values for the percent of total N 
available to corn in the first year after swine 
manure is injected in the soil.

For corn after corn in 2007 (figure 7b), 
fields that received Swine Fall and AA Fall 
had the largest percent-deficient area. Both 
of these N management categories had the 
largest average amount of N applied (data 
not shown). This suggests that substantial N 
losses occurred within fields that received 
AA Fall and Swine Fall applications in 2007. 
Sidedress UAN applications had a much 
smaller percent-deficient area for corn after 
corn than for corn after soybean in 2007 
(figure 7b), but the number of fields with 
UAN SD for corn after corn was relatively 
small (data not shown).

The best multiple regression model for 
2008 data explained 7% of the total variation 
in percentage of deficient area within fields 
(table 2). Only the effects of the N manage-
ment category and cumulative rainfall from 
March through June were statistically sig-
nificant. Similar to the data observed in 2006 
and 2007, early-season rainfall increased per-
cent-deficient area, but the slope for rainfall 
(percentage increase in deficient area per cm 
of rain received) was about two times smaller 
in 2008 than the slopes in 2006 and 2007. The 
effect of the total N application rate was not 
statistically significant, but this potential pre-
dictor was kept in the final regression model.

Neither the effect of the previous crop nor 
the interaction between the N management 

Table 2
Summaries of the best multiple regression models for identifying factors affecting percent-deficient area within 565 fields evaluated in 2006, within 
473 fields in 2007, and within 573 fields in 2008.

	 Slope	 Probability of significance	 Multiple coefficient
Predictor variable	 (% unit–1)	 based on F test	 of determination (r2)

2006
N management category*		  0.002	 0.08
Total N rate (kg N ha–1)	 –0.16	 0.001
June rainfall (cm)	 1.5	 0.02
2007
N management category		  0.001	 0.13
Previous crop		  0.01
N management category × previous crop		  0.07
Total N rate (kg N ha–1)	 –0.11	 0.08
May rainfall (cm)	 1.3	 0.004
2008
N management category		  0.004	 0.07
Total N rate (kg N ha–1)	 –0.05	 0.25
Cumulative March through June rainfall (cm)	 0.6	 0.0001
Note: N = nitrogen.
* A combination of N form and timing of application.

category and the previous crop was statisti-
cally significant in 2008 (figure 7c). Across 
both corn after corn and corn after soybean, 
fields with AA Spring had the lowest per-
centage of deficient area. Similar to 2007, the 
largest percent-deficient areas in 2008 were 
for UAN SD, UAN Spring, and AA Fall, 
which suggests the possibility of substantial 
N losses within fields in those N manage-
ment categories. On average, AA Spring had 
only about 10 to 20 kg N ha–1 (9 to 18 lb 
N ac–1) more N applied than fields receiving 
UAN SD and UAN Spring and only about 
10 kg N ha–1 (9 lb N ac–1) less N than AA 
Fall. However, the fields receiving AA Spring 
had about 30 to 50 kg N ha–1 (27 to 45 lb N 
ac–1) less N than fields receiving Swine Fall 
applications (data not shown).

The data presented in table 2 suggest that 
a large percentage of the total variation in 
percent-deficient area was not explained by 
the predictor variables used in the multiple 
regressions. This could be because our analyses 
did not include soil characteristics observed 
within fields sampled across the state. In the 
future studies, it would be desirable to evalu-
ate the potential effects of soil drainage class, 
soil organic matter level, or field topography 
on spatial variability on predicted categorical 
N status within all fields across the state. The 
relatively low observed r 2 values in table 2 
could also be due to a small number of obser-
vations used for calibrating DAI to the binary 
corn N status within each field. However, the 
low predictability of the multiple regressions 

did not diminish the finding that N fertilizer 
forms and timing of application along with 
early-season rainfall were the most important 
factors when quantifying the size of deficient 
area within fields.

The date of taking the DAI and field size 
did not have statistically significant effects on 
percent-deficient area in each year (table 2). 
The first observation is important because it 
suggests that the time for taking the imag-
ery is less critical and is relatively flexible as 
long as DAI is acquired before plants start 
senescence and before the corn canopy 
reflectance characteristics begin to change. 
The relatively similar slopes for the statewide 
multilevel models (table 1) also suggest that 
other sources of DAI imagery (Iowa and 
some other states provide DAI for free) may 
be used for guiding CSNT sampling and 
calibrating the imagery for stalk test results, 
but future studies are needed for exploring 
this possibility.

Deficient Area for Major Soil Types 
within the Des Moines Lobe. Among eight 
landform areas, the Des Moines Lobe (north 
central Iowa) had the largest number of 
cornfields sampled in each year (figure 1). 
Percent-deficient area was estimated for each 
soil type within each field, but comparisons 
were completed only among five major soil 
types (figure 8). These major soil types create 
a common toposequence with well-drained 
Clarion soils located at the summit, some-
what poorly drained Nicollet soils located 
at the shoulder, poorly drained calcareous 
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Figure 8
Mean percentage area predicted as deficient in corn N status for five major soil types within (a) 
217 fields sampled in 2006, (b) 126 fields in 2007, and (c) 185 fields in 2008 for the Des Moines 
Landform Area. Clarion soils are well drained, Nicollet soils are somewhat poorly drained, 
Canisteo and Webster soils are poorly drained, and Okoboji soils are very poorly drained. Differ-
ences among the soil types were not statistically significant at p < 0.1 in each year.
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Canisteo soils and poorly drained Webster 
soils located at the backslope, and with very 
poorly drained high organic matter Okoboji 
soils located at the footslope.

Means for estimated percent-deficient area 
for Clarion, Nicollet, Canisteo, Webster, and 
Okoboji soil types for the two previous crops 
(corn after corn and corn after soybean) are 
shown in figure 8. The effects of soil types 
and the previous crops and their interac-
tions were not statistically significant at p < 
0.1. However, percent-deficient area within 
Webster and Okoboji soils, which are located 
in areas of lower topography, was about 10% 
to 15% higher than percent-deficient area for 
Clarion, Nicollet, Canisteo soils, which are 
located in areas of higher topography (figure 
8b). For the 2008 data (figure 8c), the size of 
deficient area also slightly increased as eleva-
tion and slope within the fields decreased. 
These observations may indicate that larger N 
losses occurred in lower topography areas in 
relatively wet 2007 and excessively wet 2008.

The data shown in figure 8 also illustrate 
that spatial variability observed on DAI of 
the corn canopy is often too complex to be 
adequately classified by information from the 
digital soil maps. For example, three major 
soil types for field 2008045 shown in figure 
2 had the following percent-deficient area: 
Clarion had 34%, Nicollet had 38%, and 
Webster had 32%, but the large difference in 
soil drainage among these soils indicates that 
there should be a larger difference in the size 
of N-deficient area. Because of the complex-
ity of N losses within fields, the approach 
described here of utilizing low cost, uncali-
brated DAI together with measuring the N 
status by using the CSNT as feedback about 
the effectiveness of N management has a 
great potential to improve site-specific N 
management and to make both economic 
and environmental improvements.

Summary and Conclusions
About 30 groups of farmers, lead by local 
agronomists and crop consultants, utilized 
late-season DAI of the corn canopy and 
CSNT for evaluating common N man-
agement practices within >600 cornfields 
sampled across Iowa during a three-year 
period between 2006 and 2008. This type of 
on-farm evaluation, called adaptive manage-
ment, differs from the traditional controlled 
small-plot N studies because farmers and 
agronomists participating voluntarily identify 
the critical management problems for evalu-
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ations, and the evaluations are completed by 
the participants. The advantage of such eval-
uations is that farmers can use their normal 
application equipment and their common 
N fertilizer practices, including forms and 
timing of applications. Also, the results and 
feedback from these evaluations can be used 
to develop more accurate site-specific N fer-
tilizer recommendations for fields evaluated 
and for similar management categories across 
the state. These site-specific recommendations 
are based not only on the feedback informa-
tion from the DAI and CSNT results but also 
on the farmers’ knowledge of previous field 
history, soil properties, and rainfall patterns.

We developed and tested a methodology 
for calibrating DAI to a binary N status of 
corn, expressed as deficient and sufficient 
(a combination of marginal, optimal, and 
excessive categories of CSNT) and for esti-
mating the percent of area that is deficient in 
N within each field based on green reflec-
tance of the corn canopy. Also, we identified 
major factors that influenced the percent-
deficient area within fields evaluated each 
year. A relatively small effect was found for 
the total N rate applied with commercial fer-
tilizer or liquid swine manure. A small effect 
was also found for the previous crop. The 
field size and timing of taking the imagery 
did not have statistically significant effects on 
the percent-deficient area. The largest effects 
on percent-deficient area had a variable 
that described N management practice (a 
combination of N form and timing of appli-
cation) and early season rainfall (May,  June, 
or cumulative from March through June). 
During each year, fields receiving AA Spring 
had a smaller percent-deficient area than 
fields receiving Swine Fall, UAN Spring, or 
UAN SD, even if AA Spring received, on 
average, lower N rates than Swine Fall.

Our image calibration methodology and 
discussions were mainly focused on the per-
cent-deficient area within fields because DAI 
works the best when identifying N deficien-
cies and because one of the four sampling 
areas was intentionally selected within 
a target-deficient area within each field. 
Although estimating the size of the area with 
excessive N status would also have practical 
significance when evaluating N management 
practices, percent-deficient area is especially 
important because it is usually attributed to 
(1) underapplication of N, (2) application 
errors (fertilizer skips), (3) nonuniformity 
of application, (4) variable N losses (leach-

ing and denitrification), or (5) other factors 
that limit N availability within fields. Future 
evaluation methodology should be focused 
more on predicting excessive corn N status 
and factors that contribute to persistently 
excessive N applications within fields.
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