ABSTRACT:
The ability of agricultural lands to sequester carbon from the atmosphere and help mitigate global warming has the potential to add value to farmland through the development of carbon-credit trading. Crucial to the creation of a market-based carbon credit trading system is the monitoring and verification of agricultural practices that promote carbon storage. Using remotely sensed images for this purpose could prove more efficient and cost-effective than traditional land-based methods. Landsat Enhanced Thematic Mapper Plus (ETM+) imagery and logistic regression had >95% accuracy in verifying no-till fallow fields. Further research is needed to investigate the potential for this low-cost technology to assist in the monitoring and verification of practices that sequester carbon. Development of an accurate, low-cost, efficient means of monitoring and verifying carbon sequestering practices will further the development of cropland carbon credits, thus helping to mitigate global warming, and will add value to U.S. farmland.
Footnotes
Ross S. Bricklemyer is a research assistant, Rick L. Lawrence is assistant professor of Remote Sensing, and Perry R. Miller is assistant professor of Cropping Systems in the Department of Land Resources and Environmental Sciences at Montana State University, Bozeman, Montana.
- Copyright 2002 by the Soil and Water Conservation Society
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.