Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Documenting no-till and conventional till practices using Landsat ETM+ imagery and logistic regression

R.S. Bricklemyer, R.L. Lawrence and P.R. Miller
Journal of Soil and Water Conservation September 2002, 57 (5) 267-271;
R.S. Bricklemyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.L. Lawrence
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.R. Miller
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

ABSTRACT:

The ability of agricultural lands to sequester carbon from the atmosphere and help mitigate global warming has the potential to add value to farmland through the development of carbon-credit trading. Crucial to the creation of a market-based carbon credit trading system is the monitoring and verification of agricultural practices that promote carbon storage. Using remotely sensed images for this purpose could prove more efficient and cost-effective than traditional land-based methods. Landsat Enhanced Thematic Mapper Plus (ETM+) imagery and logistic regression had >95% accuracy in verifying no-till fallow fields. Further research is needed to investigate the potential for this low-cost technology to assist in the monitoring and verification of practices that sequester carbon. Development of an accurate, low-cost, efficient means of monitoring and verifying carbon sequestering practices will further the development of cropland carbon credits, thus helping to mitigate global warming, and will add value to U.S. farmland.

Footnotes

  • Ross S. Bricklemyer is a research assistant, Rick L. Lawrence is assistant professor of Remote Sensing, and Perry R. Miller is assistant professor of Cropping Systems in the Department of Land Resources and Environmental Sciences at Montana State University, Bozeman, Montana.

  • Copyright 2002 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 57 (5)
Journal of Soil and Water Conservation
Vol. 57, Issue 5
September/October 2002
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Documenting no-till and conventional till practices using Landsat ETM+ imagery and logistic regression
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Documenting no-till and conventional till practices using Landsat ETM+ imagery and logistic regression
R.S. Bricklemyer, R.L. Lawrence, P.R. Miller
Journal of Soil and Water Conservation Sep 2002, 57 (5) 267-271;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Documenting no-till and conventional till practices using Landsat ETM+ imagery and logistic regression
R.S. Bricklemyer, R.L. Lawrence, P.R. Miller
Journal of Soil and Water Conservation Sep 2002, 57 (5) 267-271;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Soil organic carbon and nitrogen storage estimated with the root-zone enrichment method under conventional and conservation land management across North Carolina
  • Cropping system drives microbial community response to simulated climate change and plant inputs
  • Women taking action: Multisession learning circles, storytelling, and an ecosystem of relationships for conservation
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society