Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Soil carbon pools in central Texas: Prairies, restored grasslands, and croplands

K.N. Potter and J.D. Derner
Journal of Soil and Water Conservation May 2006, 61 (3) 124-128;
K.N. Potter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.D. Derner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

ABSTRACT:

Establishment of perennial grasses on degraded soils has been suggested as a means to improve soil quality and sequester carbon in the soil. Particulate organic carbon may be an important component in the increased soil carbon content. We measured particulate organic carbon [defined as organic carbon in the 53 to 2000 μm (0.002 to 0.08 in) size fraction] and mineral associated organic carbon (defined as the less than 53 μm (0.002 in) size fraction) at three locations in central Texas. Each location had a never-tilled native grassland site, a long-term agricultural site and a restored grassland on a previously tilled site. Organic carbon pool sizes varied in the surface 40 cm (16 in) of native grassland, restored grasslands and agricultural soils. The native grasslands contained the largest amounts of total organic carbon, while the restored grasslands and agricultural soils contained similar amounts of total organic carbon. Both particulate organic carbon and mineral associated carbon pools were reduced beyond the depth of tillage in the restored grass and agricultural soils compared to the native grassland soils. The restored grassland soils had a larger particulate organic carbon content than the agricultural soils, but the increase in particulate organic carbon was limited to the surface 5 cm (2 in) of soil. Trends in particulate organic carbon accumulation over time from nine to 30 years were not significant in this study.

Footnotes

  • Ken Potter is soil scientist with the U.S. Department of Agriculture Grassland, Soil, and Water Research Laboratory in Temple, Texas. Justin D. Derner is a rangeland scientist with the U.S. Department of Agriculture, High Plains Grassland Research Station in Cheyenne, Wyoming.

  • Copyright 2006 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 61 (3)
Journal of Soil and Water Conservation
Vol. 61, Issue 3
May/June 2006
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Soil carbon pools in central Texas: Prairies, restored grasslands, and croplands
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
17 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Soil carbon pools in central Texas: Prairies, restored grasslands, and croplands
K.N. Potter, J.D. Derner
Journal of Soil and Water Conservation May 2006, 61 (3) 124-128;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Soil carbon pools in central Texas: Prairies, restored grasslands, and croplands
K.N. Potter, J.D. Derner
Journal of Soil and Water Conservation May 2006, 61 (3) 124-128;
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the Agricultural Conservation Planning Framework toolbox in a Southern Piedmont landscape of the United States
  • Soil erodibility after the removal of wood chip mulch: A wind tunnel experiment
  • Susceptibility to detachment and transportation of soil material as a result of water erosion in a flysch basin in the Beskid Wyspowy (Western Carpathians): Modeling of rainwater flow paths
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society