Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
  • Log out

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
  • Log out
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow

G.C. Heathman, M. Larose and J.C. Ascough
Journal of Soil and Water Conservation January 2009, 64 (1) 17-32; DOI: https://doi.org/10.2489/jswc.64.1.17
G.C. Heathman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Larose
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Ascough II
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The integration of geographic information systems (GIS) and hydrologic models provides the user with the ability to simulate watershed-scale processes within a spatially digitized computer-based environment. Soil type and land use data are essential GIS data layers used in a wide array of government and private sector activities, including resource inventory, land management, landscape ecology, and hydrologic modeling. This investigation was conducted to evaluate the use of different combinations of Soil Survey Geographic (SSURGO) and State Soil Geographic (STATSGO) soil classification systems and the USDA National Agricultural Statistics Service (NASS) and national Gap Analysis Project (GAP) land use data sets and their effects on modeled stream flow using the Soil and Water Assessment Tool (SWAT2005). Performance of the model was tested on the Cedar Creek Watershed in northeastern Indiana, one of 14 benchmark watersheds in the USDA Agricultural Research Service Conservation Effects Assessment Project (CEAP) watershed assessment component. CEAP comprises two main components: (1) a national assessment that provides model estimates of conservation benefits for annual reporting and (2) a watershed assessment component aimed at quantifying the environmental benefits from specific conservation practices at the watershed scale. Model performance for daily, monthly, and annual uncalibrated stream flow responses in SWAT was assessed using the Nash-Sutcliffe efficiency coefficient (ENS), coefficient of determination (R2), root mean square error (RMSE), ratio of RMSE to the standard deviation of measured data (RSR), and percent bias (PBIAS). We found that the range of relative error (e.g., PBIAS) and ENS values for uncalibrated stream flow predictions in this study were similar to others that have been reported in the literature. Simulated stream flow values ranged from slight overestimations of approximately 5%, to underestimating stream flow by 25% to 41% depending on the combination of soil and land use input data sets. Overall, the NASS SSURGO data sets gave the best model performance for monthly stream flow having an ENS value of 0.58, R2 of 0.66, RSR of 0.65, and PBIAS equal to 21.93. The poorest model performance results were obtained using the GAP SSURGO data sets that had an ENS value of -2.58, R2 of 0.49, RSR of 1.89, and a PBIAS value of 27.92. The results of this study indicate that in using the SWAT model, several factors regarding GIS input data sets may affect stream flow simulations and, consequently, water quality assessment studies. In addition to the effect of GIS source data on model output (e.g., SSURGO, STATSGO, NASS, GAP), there is evidence shown in this study that the interaction, pre-processing, and aggregation of unique combinations of GIS input layers within SWAT also influence simulated stream flow output. Overall, results of the study indicate that the use of different land use GIS layers has a greater effect on stream flow estimates than different soil data layers.

Footnotes

  • Gary C. Heathman is a soil scientist at the National Soil Erosion Research Laboratory, USDA Agricultural Research Service, West Lafayette, Indiana. Myriam Larose is a research graduate assistant in the Agronomy Department, Purdue University, West Lafayette, Indiana. James C. Ascough II is a hydrologic engineer at the Agricultural Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado.

  • © 2009 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 64 (1)
Journal of Soil and Water Conservation
Vol. 64, Issue 1
January/February 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow
G.C. Heathman, M. Larose, J.C. Ascough
Journal of Soil and Water Conservation Jan 2009, 64 (1) 17-32; DOI: 10.2489/jswc.64.1.17

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow
G.C. Heathman, M. Larose, J.C. Ascough
Journal of Soil and Water Conservation Jan 2009, 64 (1) 17-32; DOI: 10.2489/jswc.64.1.17
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds
  • Application of a calibrated/validated Agricultural Policy/Environmental eXtender model to assess sediment and nutrient delivery from the Wildcat Creek Mississippi River Basin Initiative-Cooperative Conservation Partnership Initiative
  • Effectiveness of best management practices in improving water quality in a pasture-dominated watershed
  • Does soil data resolution matter? State Soil Geographic database versus Soil Survey Geographic database in rainfall-runoff modeling across Wisconsin
  • Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 streamflow calibration parameters and simulation accuracy
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society