Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP

M.-K. Kim, D.C. Flanagan, J.R. Frankenberger and C.R. Meyer
Journal of Soil and Water Conservation March 2009, 64 (2) 154-162; DOI: https://doi.org/10.2489/jswc.64.2.154
M.-K. Kim
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.C. Flanagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Frankenberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.R. Meyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The quality of spatially and temporally distributed weather information is critical in soil erosion model results because of the primary influence of rainfall on runoff and soil movement. Detailed climate data for the Water Erosion Prediction Project (WEPP) model can be generated by a climate generator (CLIGEN) based on long-term statistical parameters for more than 4,000 locations in the United States. The objectives of this study were to apply CLIGEN and WEPP and examine the effects of changing storm frequency, storm depth, or a combination of the two on predicted rainfall, runoff, and soil loss. Two different sites, Chun-Cheon and Jeon-Ju, were studied and compared for the period 1966 to 2005. Chun-Cheon is located at a higher altitude and is surrounded with forest, while Jeon-Ju is located in the plains. CLIGEN was used to generate 100-year climate sequences with daily climate data e.g., temperature, precipitation, wind, and solar radiation for a representative climate station in the study sites to predict runoff and soil loss with WEPP. Three precipitation change scenarios were examined in this study: (1) adjusting the number of days with rainfall, (2) adjusting the mean amount of rainfall on a wet day, and (3) a combination of 1 and 2. Observed mean annual precipitation at Chun-Cheon (1,305 mm [50.9 in]) was similar to Jeon-Ju (1,291 mm [50.4 in]). CLIGEN simulated mean annual precipitation depths in Chun-Cheon and Jeon-Ju were very close to the observed data. The WEPP model predicted runoff in Jeon-Ju was 48.8% higher than that in Chun-Cheon and estimated soil loss in Chun-Cheon was 55.6% higher than that in Jeon-Ju. Precipitation change scenario 3 that combined changes in precipitation occurrence with changes in rainfall storm depths showed the largest impacts on predicted runoff and soil loss. A combined 20% increase in these precipitation parameters resulted in increases of 44%, 54%, and 52% in generated average annual precipitation, predicted runoff and predicted soil loss, respectively, at Chun-Cheon, while increases at Jeon-Ju were 44%, 60%, and 27%. Increases in rainfall due to future climate change may thus potentially result in substantial and nonlinear increases in runoff and soil loss in Korea.

Footnotes

  • Min-Kyeong Kim is a researcher at the National Institute of Agricultural Science and Technology for Rural Development Administration in Suwon, Republic of Korea. Dennis C. Flanagan is an agricultural engineer and James R. Frankenberger is a computer scientist at the National Soil Erosion Research Laboratory for the USDA Agricultural Research Service in West Lafayette, Indiana. Charles R. Meyer, formerly a computer scientist for the USDA Agricultural Research Service in West Lafayette, Indiana, is now deceased.

  • © 2009 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 64 (2)
Journal of Soil and Water Conservation
Vol. 64, Issue 2
March/April 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP
M.-K. Kim, D.C. Flanagan, J.R. Frankenberger, C.R. Meyer
Journal of Soil and Water Conservation Mar 2009, 64 (2) 154-162; DOI: 10.2489/jswc.64.2.154

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Impact of precipitation changes on runoff and soil erosion in Korea using CLIGEN and WEPP
M.-K. Kim, D.C. Flanagan, J.R. Frankenberger, C.R. Meyer
Journal of Soil and Water Conservation Mar 2009, 64 (2) 154-162; DOI: 10.2489/jswc.64.2.154
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society