Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Effects of a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers on sediment, nitrate, and phosphorus losses with runoff

D.F. Webber, S.K. Mickelson, T.L. Richard and H.K. Ahn
Journal of Soil and Water Conservation March 2009, 64 (2) 163-171; DOI: https://doi.org/10.2489/jswc.64.2.163
D.F. Webber
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.K. Mickelson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.L. Richard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.K. Ahn
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

This study quantified the effects of a livestock manure-based windrow composting practice with a fly ash composting pad surface and vegetative filter strip (VFS) buffers on losses of runoff, runoff percent of rainfall, total solids, nitrate-nitrogen, ortho-phosphorus (PO4-P), and total-phosphorus during natural rainfall events. Runoff data from six events were collected during June and July (early season) and August and September (late season) 60-day duration composting periods from 2002 through 2004 at an Iowa State University research farm near Ames, central Iowa, USA. The research site was selected on uneven terrain with average slopes of 5% and 2% on the VFS buffer and composting pad plot areas, respectively. Runoff treatments were comprised of three compost windrows:VFS buffer area ratios that included 1:1, 1:0.5, and 1:0 (no buffer) control. The 1:1 and 1:0.5 area ratios represented a 6.0-m (20-ft) wide × 23-m (75-ft) long fly ash composting pad area compared to VFS buffer areas of equal and one-half size, respectively. All treatments had three replications for a total of nine runoff plots in a randomized complete block design. Results from the study indicate significantly higher levels (p < 0.05) of runoff, runoff percent of rainfall, total solids, nitrate-nitrogen, PO4-P, and total-phosphorus from the 1:0 control plots compared to the 1:1 and 1:0.5 VFS buffer plots. Results also show the 1:1 and 1:0.5 VFS buffer treatments were not significantly different (p < 0.05) and that average runoff loss reductions from the 1:1 and 1:0.5 VFS buffer plots were 98% and 93%, respectively, compared to the 1:0 control plots. These results reflect the effectiveness of VFS buffers for reducing runoff and contaminant losses from a windrow composting site. Compost nutrient mass balance analysis results indicate 41% and 26% of PO4-P were lost from the compost windrows during the 2004 early season and late season composting periods, respectively. However, only 0.1% to 0.4% of PO4-P was lost to runoff from the 1:0 control plots during the respective 2004 early season and late season composting periods. We hypothesize the relatively lower PO4-P losses in runoff may be attributed to potential chemical and physical effects of the fly ash composting pad material.

Footnotes

  • David F. Webber is a postdoctoral research associate and Steven K. Mickelson is an associate professor in the Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa. Thomas L. Richard is an associate professor in the Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania. Hee-Kwon Ahn is a research biologist with the USDA Agricultural Research Service, Beltsville, Maryland.

  • © 2009 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 64 (2)
Journal of Soil and Water Conservation
Vol. 64, Issue 2
March/April 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effects of a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers on sediment, nitrate, and phosphorus losses with runoff
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Effects of a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers on sediment, nitrate, and phosphorus losses with runoff
D.F. Webber, S.K. Mickelson, T.L. Richard, H.K. Ahn
Journal of Soil and Water Conservation Mar 2009, 64 (2) 163-171; DOI: 10.2489/jswc.64.2.163

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Effects of a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers on sediment, nitrate, and phosphorus losses with runoff
D.F. Webber, S.K. Mickelson, T.L. Richard, H.K. Ahn
Journal of Soil and Water Conservation Mar 2009, 64 (2) 163-171; DOI: 10.2489/jswc.64.2.163
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Hydrologic modeling of runoff from a livestock manure windrow composting site with a fly ash pad surface and vegetative filter strip buffers
  • Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society