Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Conservation tillage to effectively reduce interrill erodibility of highly-weathered Ultisols

C.C. Truman, J.N. Shaw, D.C. Flanagan, D.W. Reeves and J.C. Ascough
Journal of Soil and Water Conservation July 2009, 64 (4) 265-275; DOI: https://doi.org/10.2489/jswc.64.4.265
C.C. Truman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.N. Shaw
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.C. Flanagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.W. Reeves
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Ascough II
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • References
  • PDF
Loading

Abstract

Highly weathered Southeastern soils traditionally cropped under conventional tillage systems are drought-prone and susceptible to runoff and soil loss. We quantified differences in infiltration, runoff, soil loss, and interrill erodibilities (Ki) for three soils: Compass loamy sand, Decatur silt loam, and Tifton loamy sand managed under conventional- (CT), strip- (ST), and/or no-till (NT) systems with and without a residue cover (rye [Secale cerale L.]) (+C/-C) and with and without paratilling (+P/-P). Duplicate plots (1 m2 [~10 ft2]) on each tillage treatment received simulated rainfall (50 mm h-1 [2 in hr-1] for two hours). Runoff and sediment yields were continuously measured, and Ki values were calculated from measured data. The Water Erosion Prediction Project (WEPP) model was used to extend experimental data to long-term annual trends. For the Compass soil, NT-C plots increased runoff by as much as 43% and sediment yields by as much as 10-fold compared to NT+C plots. The NT+P+C plots decreased runoff by as much as 70% and sediment yields by 24-fold compared to CT-P-C. For the Decatur soil, NT+P plots decreased runoff by as much as 71% and sediment yields by as much as 2.7-fold compared to NT-P plots. The NT+P+C plots decreased runoff by as much as 73% and sediment yields by as much as 11.8-fold compared to CT-P-C. For the Tifton soil, ST+P+C plots decreased runoff by as much as 44% and sediment yields by as much as 2.7-fold compared to CT-P-C plots. Calculated Ki values for the Compass, Decatur, and Tifton soils were 0.37, 0.40, and 0.24, respectively. Residue cover decreased effective interrill erodibilities (Kieff) values by 11%, 2-fold, and 2.6-fold for the Decatur, Tifton, and Compass soils, respectively; Paratilling decreased Kieff values by 3-fold for the Compass and Decatur soils. The NT and/or ST systems had lower Kieff values than Ki values from corresponding CT-P-C treatments (Compass = 4- to 37-fold; Decatur = 4- to 13-fold; Tifton = 2-fold). Converting from a CT to a NT or ST system reduced predicted runoff (Compass = 1.7-fold; Decatur = 10% to 17%; Tifton = 1.6- to 2.3-fold) and sediment yields (Compass = 10- to 12-fold; Decatur = 6- to 33-fold; Tifton = 7.3- to 12.1-fold). The most benefit of NT or ST, as quantified by the maximum difference in 100-year predicted runoff and sediment yields, was for the Compass (78%) and Tifton (75%) soils for runoff and for the Compass (10.3-fold) and Decatur soils (9.7-fold) for sediment. Conservation tillage systems (NT, ST) coupled with surface residue cover and/or paratilling are effective in reducing runoff and sediment yields from highly-weathered soils by lowering effective Ki values.

Footnotes

  • Clint Truman is a soil scientist for the USDA Agricultural Research Service (ARS), Southeast Watershed Research Laboratory, Tifton, Georgia. Joey Shaw is a professor in the Department of Agronomy and Soils at Auburn University, Auburn, Alabama. Dennis Flanagan is an agricultural engineer for the USDA ARS, National Soil Erosion Laboratory, West Lafayette, Indiana. Wayne Reeves is an agronomist for the USDA ARS, J. Phil. Campbell Sr. Natural Resource Conservation Center, Watkinsville, Georgia. Jim Ascough II is a hydraulic engineer for the USDA ARS, Agricultural Systems Research Unit, Ft. Collins, Colorado.

  • © 2009 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 64 (4)
Journal of Soil and Water Conservation
Vol. 64, Issue 4
July/August 2009
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Conservation tillage to effectively reduce interrill erodibility of highly-weathered Ultisols
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Conservation tillage to effectively reduce interrill erodibility of highly-weathered Ultisols
C.C. Truman, J.N. Shaw, D.C. Flanagan, D.W. Reeves, J.C. Ascough
Journal of Soil and Water Conservation Jul 2009, 64 (4) 265-275; DOI: 10.2489/jswc.64.4.265

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Conservation tillage to effectively reduce interrill erodibility of highly-weathered Ultisols
C.C. Truman, J.N. Shaw, D.C. Flanagan, D.W. Reeves, J.C. Ascough
Journal of Soil and Water Conservation Jul 2009, 64 (4) 265-275; DOI: 10.2489/jswc.64.4.265
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Comparing the short- and long-term impacts of subsurface drainage installation on soil physical and biological properties
  • Patterns and associations between dominant crop productions and water quality in an irrigated watershed
  • Estimating landowners’ willingness to accept payments for nature-based solutions in eastern North Carolina for flood hazard mitigation using the contingent valuation method
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society