Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Effects of climate change on soil carbon and nitrogen storage in the US Great Plains

R.F. Follett, C.E. Stewart, E.G. Pruessner and J.M. Kimble
Journal of Soil and Water Conservation September 2012, 67 (5) 331-342; DOI: https://doi.org/10.2489/jswc.67.5.331
R.F. Follett
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.E. Stewart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E.G. Pruessner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.M. Kimble
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Soils of the US Great Plains contain enormous stocks of soil organic carbon (SOC) and soil organic nitrogen (SON) that are vulnerable to predicted climate and land use change. Climate change scenarios predict a 2.2°C to 3.6°C (4°F to 6.5°F) increase and more variability in precipitation across most of the United States. This study quantifies management effects (native grassland, Conservation Reserve Program [CRP], and cropped) on SOC and SON stocks across the region and assessed soil variables (soil texture, cation exchange capacity, and others) and climatic drivers (precipitation and temperature) to predict future changes in carbon (C) and nitrogen (N) stocks. Across all sites, cropped land had significantly lower C and N stocks in the 0 to 5 cm (0 to 2 in) and 0 to 10 cm (0 to 3.9 in) depths than native sites, while CRP sites were intermediate. Mean annual temperature (MAT), the ratio of mean annual precipitation to potential evapotranspiration (MAP:PET), soil bulk density (BD), and clay content were important covariates for SOC and SON stocks within land use. Soil C and N stocks under all three land uses were strongly negatively related to MAT and positively related to MAP:PET, suggesting that they are equally vulnerable to increased temperature and decreasing water availability. Based on these empirical relationships, a 1°C (1.8°F) increase in MAT could cause a loss of 486 Tg SOC (536 million tn) and a loss of 180 kg SON ha−1 (160 lb SON ac−1) from the top 10 cm (3.9 in) of soil over 30 years, but the decrease will be mediated by water availability (MAP:PET). Combined, increased temperature and conversion from CRP to cropland could decrease the existing SOC sink, but improved soil management and increased water availability may help offset these losses in the US Great Plains.

  • © 2012 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 67 (5)
Journal of Soil and Water Conservation
Vol. 67, Issue 5
September/October 2012
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Effects of climate change on soil carbon and nitrogen storage in the US Great Plains
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Effects of climate change on soil carbon and nitrogen storage in the US Great Plains
R.F. Follett, C.E. Stewart, E.G. Pruessner, J.M. Kimble
Journal of Soil and Water Conservation Sep 2012, 67 (5) 331-342; DOI: 10.2489/jswc.67.5.331

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Effects of climate change on soil carbon and nitrogen storage in the US Great Plains
R.F. Follett, C.E. Stewart, E.G. Pruessner, J.M. Kimble
Journal of Soil and Water Conservation Sep 2012, 67 (5) 331-342; DOI: 10.2489/jswc.67.5.331
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

Research Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Special Research Section: Conservation Practices to Mitigate the Effects of Climate Change

  • Soil carbon sequestration in the dryland cropping region of the Pacific Northwest
  • Characterization of maize inbred lines for drought and heat tolerance
Show more Special Research Section: Conservation Practices to Mitigate the Effects of Climate Change

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society