Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Simulating sediment loading into the major reservoirs in Trinity River Basin

X. Wang, M. White, P. Tuppad, T. Lee, R. Srinivasan, T. Zhai, D. Andrews and B. Narasimhan
Journal of Soil and Water Conservation September 2013, 68 (5) 372-383; DOI: https://doi.org/10.2489/jswc.68.5.372
X. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Tuppad
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Srinivasan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Zhai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Andrews
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Narasimhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The Upper Trinity River Basin supplies water to about one-fourth of Texas's population. The anticipated rapid growth of North Central Texas will certainly increase regional demands for high-quality drinking water. This has increased concerns that sediment and nutrient loads received by drinking water reservoirs are reducing and will continue to reduce reservoir volumes and water quality. The objectives of this study are to calibrate and validate the Soil and Water Assessment Tool (SWAT) model for streamflow and sediment to assess current rates and sources of sediment loadings to 12 major reservoirs in the Upper Trinity River Basin (in 7 eight-digit watersheds) and to use the calibrated model for assessing the effects of upland ponds. SWAT performed well for streamflow, as evidenced by r2 values ranging from 0.55 to 0.95. Nash-Sutcliffe efficiency values ranged from 0.5 to 0.9 based on monthly streamflow comparisons between simulated and observed values for calibration, and r2 values ranged from 0.58 to 0.95 for validation. SWAT simulated sediment loads reasonably well, as evidenced by the percentage of errors within 11%. Streamflow and sediment loading were quite diverse across the Trinity River Basin, resulting in a multitude of parameter adjustments during calibration. Long-term predictions indicate that the Richland-Chambers, Ray Hubbard, and Lavon watersheds have significant channel contribution to sediment loading reaching the reservoirs. Pond removal scenario analysis shows a 4% to 48% reduction in sediment loadings to reservoirs via pond detention of overland flow. This wide range is mainly due to the vastly different proportion of land area draining to ponds, the locations of ponds, and the basin's erosion (upland and channel) characteristics within each study watershed. The results indicate that in addition to implementing conservation practices such as ponds in upland areas, it is also necessary to have conservation practices in channels to further reduce erosion and subsequent loss to reservoirs. One limitation of this study is the lack of site-specific management information, and it is known that poor management practices at the field level can dramatically elevate sediment loads from an area. In this study, reasonable management operations were applied mainly at the county conservation district level. Opportunity exists for further data collection, including detailed data of field management and channel dimensions, which will allow the model to provide greater insight in identifying sensitive areas and reaches for stabilization and restoration. Opportunity also exists for further evaluation of the effects of optimizing pond size and placement to minimize reservoir sediment loading.

  • © 2013 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 68 (5)
Journal of Soil and Water Conservation
Vol. 68, Issue 5
September/October 2013
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Simulating sediment loading into the major reservoirs in Trinity River Basin
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Simulating sediment loading into the major reservoirs in Trinity River Basin
X. Wang, M. White, P. Tuppad, T. Lee, R. Srinivasan, T. Zhai, D. Andrews, B. Narasimhan
Journal of Soil and Water Conservation Sep 2013, 68 (5) 372-383; DOI: 10.2489/jswc.68.5.372

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Simulating sediment loading into the major reservoirs in Trinity River Basin
X. Wang, M. White, P. Tuppad, T. Lee, R. Srinivasan, T. Zhai, D. Andrews, B. Narasimhan
Journal of Soil and Water Conservation Sep 2013, 68 (5) 372-383; DOI: 10.2489/jswc.68.5.372
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society