Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation

M.J. White, C. Santhi, N. Kannan, J.G. Arnold, D. Harmel, L. Norfleet, P. Allen, M. DiLuzio, X. Wang, J. Atwood, E. Haney and M. Vaughn Johnson
Journal of Soil and Water Conservation January 2014, 69 (1) 26-40; DOI: https://doi.org/10.2489/jswc.69.1.26
M.J. White
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Santhi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Kannan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.G. Arnold
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Harmel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Norfleet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Allen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. DiLuzio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Atwood
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Haney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Vaughn Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Excessive nutrients transported from the Mississippi River Basin (MRB) have created a hypoxic zone within the Gulf of Mexico, with numerous negative ecological effects. Furthermore, federal expenditures on agricultural conservation practices have received intense scrutiny in recent years. Partly driven by these factors, the USDA Conservation Effects Assessment Project (CEAP) recently completed a comprehensive evaluation of nutrient sources and delivery to the Gulf. The modeling framework used in the CEAP Cropland National Assessment, or Cropland CEAP, consists of the Agricultural Policy/Environmental eXtender (APEX) and Soil and Water Assessment Tool (SWAT) models. This CEAP modeling framework was successfully calibrated for flow, sediment, and nutrients at 38 sites and validated at an additional 17. Simulation results indicated that cultivated cropland was the dominant source of nitrogen (N) and phosphorus (P) to both local waters and the Gulf, but this was not true for each water resource region within the MRB. In addition, the results showed that point sources remain significant contributors of P loads, especially in the Tennessee and Arkansas/Red River basins where point source P loads exceeded those from cultivated cropland. Similarly, urban nonpoint sources were significant nutrient sources. The Upper Mississippi, Lower Mississippi, and Ohio basins contributed the largest amounts of nutrients delivered to the Gulf. The high delivery areas near the Mississippi River main stem, from which 87% of N and 90% of P was predicted to reach the Gulf, also coincided with elevated nutrient yields to local waters. Conservation practices established on agricultural lands within the MRB were predicted to have reduced nutrient loads to the Gulf by 20% as compared with a no conservation condition. The results indicate the importance of targeted implementation of conservation practices and consideration of local water and/or Gulf impacts depending on program goal(s). The present application illustrates the value of the Cropland CEAP modeling framework as a useful, science-based tool to evaluate pollutant sources and delivery and effects of agricultural conservation practices.

  • © 2014 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 69 (1)
Journal of Soil and Water Conservation
Vol. 69, Issue 1
January/February 2014
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation
M.J. White, C. Santhi, N. Kannan, J.G. Arnold, D. Harmel, L. Norfleet, P. Allen, M. DiLuzio, X. Wang, J. Atwood, E. Haney, M. Vaughn Johnson
Journal of Soil and Water Conservation Jan 2014, 69 (1) 26-40; DOI: 10.2489/jswc.69.1.26

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation
M.J. White, C. Santhi, N. Kannan, J.G. Arnold, D. Harmel, L. Norfleet, P. Allen, M. DiLuzio, X. Wang, J. Atwood, E. Haney, M. Vaughn Johnson
Journal of Soil and Water Conservation Jan 2014, 69 (1) 26-40; DOI: 10.2489/jswc.69.1.26
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Development of a novel framework for modeling field-scale conservation effects of depressional wetlands in agricultural landscapes
  • Development of Agricultural Conservation Reduction Estimator (ACRE), a simple field-scale conservation planning and evaluation tool
  • Identification and classification of critical soil and water conservation areas in the Muskingum River basin in Ohio
  • Measuring edge-of-field water quality: Where we have been and the path forward
  • The utilization of edge-of-field monitoring of agricultural runoff in addressing nonpoint source pollution
  • Assessing edge-of-field nutrient runoff from agricultural lands in the United States: How clean is clean enough?
  • Estimating sediment and nutrient delivery ratios in the Big Sunflower Watershed using a multiple linear regression model
  • Improving the Efficiency of Voluntary Water Quality Conservation Programs
  • Google Scholar

More in this TOC Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society