Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations

J.D. Williams, S.B. Wuest and D.S. Long
Journal of Soil and Water Conservation November 2014, 69 (6) 495-504; DOI: https://doi.org/10.2489/jswc.69.6.495
J.D. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.B. Wuest
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Long
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

The winter wheat (Triticum aestivum L.)/summer fallow rotation typically practiced in the intermediate precipitation zone (300 to 450 mm [12 to 18 in]) of the inland Pacific Northwest has proven to be economically stable for producers in this region. However, multiple tillage operations are used to control weeds and retain seed-zone soil moisture, which disturbs the soil and makes it prone to substantial erosion. Alternatives to this conventional disturbance tillage (DT) system include either no-tillage (NT) or minimum tillage (MT) in combination with increasing cropping intensity. The objective of this study was to compare runoff, soil erosion, crop residue, and yield productivity resulting from NT, and DT, or MT. Small collectors and flumes were used to quantify runoff and soil erosion from small drainages and slopes in three different experiments near Pendleton, Oregon. The first experiment included two neighboring drainages: one farmed using DT with a two-year crop rotation over eight years (2001 to 2008) and the other NT with a four-year crop rotation (2001 to 2008). The second experiment comprised a hillslope planted to different crops using NT over eight years (1998 to 2005) and MT over three years (2006 to 2008). The third experiment was situated in a shallow draw in which NT and MT with a four-year (2004 to 2008) crop rotation was compared. Runoff measured in flumes was substantially influenced by tillage method in the order of DT > NT in a ratio of 10:1 at the first site. At the second site, NT produced no runoff compared to 1.6 mm y−1 (0.06 in yr−1) from MT. Soil erosion was found to be DT > NT in a ratio of 5:1 at the first site and 2:1 for the second site. For small collectors the differences were significant: runoff was DT > NT in a ratio of 47:1 for the first site, and MT > NT in a ratio of 2:1 for the third site. Winter wheat yields did not differ significantly among NT, DT, and MT. Broader acceptance of NT cropping systems in the intermediate precipitation zone of this region would substantially decrease soil losses from farm fields and improve downstream water quality.

  • © 2014 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 69 (6)
Journal of Soil and Water Conservation
Vol. 69, Issue 6
November/December 2014
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations
J.D. Williams, S.B. Wuest, D.S. Long
Journal of Soil and Water Conservation Nov 2014, 69 (6) 495-504; DOI: 10.2489/jswc.69.6.495

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations
J.D. Williams, S.B. Wuest, D.S. Long
Journal of Soil and Water Conservation Nov 2014, 69 (6) 495-504; DOI: 10.2489/jswc.69.6.495
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Minimum tillage and no-tillage winter wheat-summer fallow for low precipitation regions
  • Soil water infiltration after oilseed crop introduction into a Pacific Northwest winter wheat-fallow rotation
  • Soil water in small drainages farmed with no-tillage and inversion tillage in northeastern Oregon
  • Google Scholar

More in this TOC Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society