Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Interpolation methods for improving the RUSLE R-factor mapping in Brazil

C.R. de Mello, M.R. Viola, P.R. Owens, J.M. de Mello and S. Beskow
Journal of Soil and Water Conservation May 2015, 70 (3) 182-197; DOI: https://doi.org/10.2489/jswc.70.3.182
C.R. de Mello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.R. Viola
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.R. Owens
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.M. de Mello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Beskow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Methods for Revised Universal Soil Loss Equation (RUSLE) rainfall erosivity factor (R-factor) predictions have been useful for land use planning in agricultural areas related to soil erosion risk map assessment, which is crucial at the regional scale. Many studies have focused on the R-factor prediction in Brazil and have utilized ordinary kriging and other methods, especially inverse square distance weighted (ISDW) predictions. For large regions with sparse sample rain-gauge network and complex atmospheric systems, such as Brazil, regression-kriging method arises as one that can produce reliable and improved results. The objective of this study was to compare the performance of (1) ordinary kriging; (2) co-kriging taking altitude as spatially distributed covariate; (3) ISDW; (4) multivariate regression model for R-factor as function of latitude, longitude, and altitude; and (5) regression-kriging. Daily pluviometric data sets from 928 rain gauges were used, considering the Modified Fournier Index (MFI) methodology for estimating the mean annual R-factor values for each rain gauge. From these stations, 155 were extracted randomly and used exclusively for statistical comparison of the methods. Regression-kriging method has demonstrated higher performance than the others, with mean absolute error of 11% compared to 15.8%, 16.2%, 19%, and 19.5%, respectively, for co-kriging, ordinary kriging, regression model, and ISDW. In addition, Willmott's index D for regression-kriging was higher than 0.94 while for the others lower than 0.90, proving its greater prediction accuracy. Thus, regression-kriging method was the most reliable, producing the best practical map. With regard to other methods, co-kriging also produced acceptable results for developing R-factor maps for Brazil.

  • © 2015 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 70 (3)
Journal of Soil and Water Conservation
Vol. 70, Issue 3
May/June 2015
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Interpolation methods for improving the RUSLE R-factor mapping in Brazil
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Interpolation methods for improving the RUSLE R-factor mapping in Brazil
C.R. de Mello, M.R. Viola, P.R. Owens, J.M. de Mello, S. Beskow
Journal of Soil and Water Conservation May 2015, 70 (3) 182-197; DOI: 10.2489/jswc.70.3.182

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Interpolation methods for improving the RUSLE R-factor mapping in Brazil
C.R. de Mello, M.R. Viola, P.R. Owens, J.M. de Mello, S. Beskow
Journal of Soil and Water Conservation May 2015, 70 (3) 182-197; DOI: 10.2489/jswc.70.3.182
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing Soil Vulnerability Index classification with respect to rainfall characteristics
  • Trade-off analysis of water conservation and water consumption of typical ecosystems at different climatic scales in the Dongjiang River basin, China
  • Long-term subsoiling and straw return increase soil organic carbon fractions and crop yield
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society