Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Performance of the Rangeland Hydrology and Erosion Model for runoff and erosion assessment on a semiarid reclaimed construction site

S.K. Nouwakpo, M. Weltz, M. Hernandez, T. Champa and J. Fisher
Journal of Soil and Water Conservation May 2016, 71 (3) 220-236; DOI: https://doi.org/10.2489/jswc.71.3.220
S.K. Nouwakpo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Weltz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Hernandez
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Champa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Fisher
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Al-Hamdan O.Z.,
    2. Hernandez M.,
    3. Pierson F.B.,
    4. Nearing M.A.,
    5. Williams C.J.,
    6. Stone J.J.,
    7. Boll J.,
    8. Weltz M.A.
    . 2014. Rangeland hydrology and erosion model (RHEM) enhancements for applications on disturbed rangelands. Hydrological Processes 29(3):445-457.
    OpenUrl
    1. Al-Hamdan O.Z.,
    2. Pierson F.B.,
    3. Nearing M.A.,
    4. Williams C.J.,
    5. Stone J.J.,
    6. Kormos P.R.,
    7. Boll J.,
    8. Weltz M.A.
    . 2012. Concentrated flow erodibility for physically based erosion models: Temporal variability in disturbed and undisturbed rangelands. Water Resources Research 48.
    1. Al-Hamdan O.Z.,
    2. Pierson F.B.,
    3. Nearing M.A.,
    4. Williams C.J.,
    5. Stone J.J.,
    6. Kormos P.R.,
    7. Boll J.,
    8. Weltz M.A.
    . 2013. Risk assessment of erosion from concentrated flow on rangelands using overland flow distribution and shear stress partitioning. Transactions of the American Society of Agricultural and Biological Engineers (ASABE) 56:539-548.
    OpenUrl
    1. Audet P.,
    2. Arnold S.,
    3. Lechner A.M.,
    4. Baumgartl T.
    . 2013. Site-specific climate analysis elucidates revegetation challenges for post-mining landscapes in eastern Australia. Biogeosciences 10:6545-6557.
    OpenUrlCrossRef
    1. Belnap J.
    2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrological Processes 20:3159-3178.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Belnap J.,
    2. Wilcox B.P.,
    3. Van Scoyoc M.W.,
    4. Phillips S.L.
    . 2013. Successional stage of biological soil crusts: An accurate indicator of ecohydrological condition. Ecohydrology 6:474-482.
    OpenUrlCrossRef
    1. Belsey D.A.,
    2. Kuh E.,
    3. Welsch R.E.
    . 1980. Regression diagnostics: Identifying influential data and sources of collinearity. New York: Wiley.
    1. Bonnin G.M.,
    2. Martin D.,
    3. Lin B.,
    4. Parzybok T.,
    5. Yekta M.,
    6. Riley D.
    . 2006. Precipitation-frequency atlas of the United States. NOAA atlas 14(2).
    1. Bracken L.J.,
    2. Croke J.
    . 2007. The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrological Processes 21:1749-1763.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Bull W.B.,
    2. Schick A.P.
    . 1979. Impact of climatic change on an arid watershed: Nahal Yael, southern Israel. Quaternary Research 11:153-171.
    OpenUrlGeoRef
    1. Cammeraat L.H.
    2002. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms 27:1201-1222.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Cammeraat E.L.H.
    2004. Scale dependent thresholds in hydrological and erosion response of a semiarid catchment in southeast Spain. Agriculture, Ecosystems and Environment 104:317-332.
    OpenUrlCrossRefWeb of Science
    1. Carroll C.,
    2. Merton L.,
    3. Burger P.
    . 2000. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Australian Journal of Soil Research 38:313-327.
    OpenUrlCrossRefGeoRef
    1. Chartier M.P.,
    2. Rostagno C.M.
    . 2006. Soil erosion thresholds and alternative states in northeastern Patagonian rangelands. Rangeland Ecology and Management 59:616-624.
    OpenUrlCrossRef
    1. Cooper C.F.
    1967. Rainfall intensity and elevation in southwestern Idaho. Water Resources Research 3:131-137.
    OpenUrlCrossRef
    1. Davenport D.W.,
    2. Breshears D.D.,
    3. Wilcox B.P.,
    4. Allen C.D.
    . 1998. Viewpoint: Sustainability of piñon-juniper ecosystems—A unifying perspective of soil erosion thresholds. Journal of Range Management 51:231-240.
    OpenUrlCrossRefWeb of Science
    1. Dunkerley D.L.,
    2. Brown K.J.
    . 1999. Banded vegetation near Broken Hill, Australia: Significance of surface roughness and soil physical properties. Catena 37:75-88.
    OpenUrlCrossRefGeoRef
    1. ESRI (Evironmental Systems Research Institute)
    . 2011. ArcGIS Desktop Release 10. Redlands, CA: Evironmental Systems Research Institute.
    1. Foster G.R.,
    2. Simanton J.R.,
    3. Renard K.G.,
    4. Lane L.J.,
    5. Osborn H.B.
    . 1981. Application of the Universal Soil Loss Equation to rangelands on a per-storm basis – Discussion. Journal of Range Management 34:161-165.
    OpenUrlCrossRef
    1. Goodrich D.C.,
    2. Guertin D.P.,
    3. Burns I.S.,
    4. Nearing M.A.,
    5. Stone J.J.,
    6. Wei H.,
    7. Heilman P.,
    8. Hernandez M.,
    9. Spaeth K.,
    10. Pierson F.,
    11. Paige G.B.,
    12. Miller S.N.,
    13. Kepner W.G.,
    14. Ruyle G.,
    15. McClaran M.P.,
    16. Weltz M.,
    17. Jolley L.
    . 2011. AGWA: The Automated Geospatial Watershed Assessment tool to inform rangeland management. Rangelands 33:41-47.
    OpenUrl
    1. Harbor J.
    1999. Engineering geomorphology at the cutting edge of land disturbance: Erosion and sediment control on construction sites. Geomorphology 31:247-263.
    OpenUrlCrossRefGeoRef
    1. Heng B.C.P.,
    2. Chandler J.H.,
    3. Armstrong A.
    . 2010. Applying close range digital photogrammetry in soil erosion studies. Photogrammetric Record 25:240-265.
    OpenUrlCrossRef
    1. Hernandez M.,
    2. Nearing M.A.,
    3. Stone J.J.,
    4. Pierson F.B.,
    5. Wei H.,
    6. Spaeth K.E.,
    7. Heilman P.,
    8. Weltz M.A.,
    9. Goodrich D.C.
    . 2013. Application of a rangeland soil erosion model using National Resources Inventory data in southeastern Arizona. Journal of Soil and Water Conservation 68(6):512-525, doi:10.2489/jswc.68.6.512.
    OpenUrlAbstract/FREE Full Text
    1. Imeson A.C.,
    2. Prinsen H.A.M.
    . 2004. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semiarid landscapes in Spain. Agriculture, Ecosystems and Environment 104:333-342.
    OpenUrlCrossRefWeb of Science
    1. Kaufman M.M.
    2000. Erosion control at construction sites: The science–policy gap. Environmental Management 26:89-97.
    OpenUrlPubMed
    1. Laflen J.M.,
    2. Lane L.J.,
    3. Foster G.R.
    . 1991. WEPP—A new generation of erosion prediction technology. Journal of Soil and Water Conservation 46(1):34-38.
    OpenUrlFREE Full Text
    1. Baker R.S.,
    2. Gee G.W.,
    3. Rosenzweig C.
    1. Lal R.
    1994. Global Overview of Soil Erosion. In Soil and Water Science: Key to Understanding Our Global Environment, ed. Baker R.S., Gee G.W., Rosenzweig C., p. 39-51. Madison, WI: Soil Science Society of America.
    1. Levy G.J.,
    2. Levin J.,
    3. Shainberg I.
    . 1997. Prewetting rate and aging effects on seal formation and interrill soil erosion. Soil Science 162:131-139.
    OpenUrlCrossRef
    1. Ludwig J.A.,
    2. Bartley R.,
    3. Hawdon A.A.,
    4. Abbott B.N.,
    5. McJannet D.
    . 2007. Patch configuration non-linearly affects sediment loss across scales in a grazed catchment in north-east Australia. Ecosystems 10:839-845.
    OpenUrlCrossRef
    1. Mein R.G.,
    2. Larson C.L.
    . 1971. Modeling the infiltration component of the rainfall-runoff process. Minneaopolis, MN: Water Resources Research Center, University of Minnesota.
    1. Miller J.,
    2. Germanoski D.,
    3. Waltman K.,
    4. Tausch R.,
    5. Chambers J.
    . 2001. Influence of late Holocene hillslope processes and landforms on modern channel dynamics in upland watersheds of central Nevada. Geomorphology 38:373-391.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Mueller E.N.,
    2. Wainwright J.,
    3. Parsons A.J.
    . 2007. Impact of connectivity on the modeling of overland flow within semiarid shrubland environments. Water Resources Research 43:13.
    OpenUrl
    1. Nearing M.A.,
    2. Wei H.,
    3. Stone J.J.,
    4. Pierson F.B.,
    5. Spaeth K.E.,
    6. Weltz M.A.,
    7. Flanagan D.C.,
    8. Hernandez M.
    . 2011. A rangeland hydrology and erosion model. Transactions of the American Society of Agricultural and Biological Engineers 54:901-908.
    OpenUrl
    1. Flanagan D.C.,
    2. Nearing M.A.
    1. Nicks A.,
    2. Lane L.,
    3. Gander G.
    . 1995. Weather generator. Chapter 2. In USDA–Water Erosion Prediction Project: Hillslope profile and watershed model documentation, ed. Flanagan D.C., Nearing M.A.. NSERL Report. West Lafayette, IN: USDA Agricultural Research Service National Soil Erosion Research Laboratory.
    1. Nouwakpo S.K.,
    2. Huang C.H.
    . 2012. The role of subsurface hydrology in soil erosion and channel network development on a laboratory hillslope. Soil Science Society of America Journal 76:1197-1211.
    OpenUrlCrossRef
    1. Okin G.S.,
    2. Parsons A.J.,
    3. Herrick J. Wainwright, J.E.,
    4. Bestelmeyer B.T.,
    5. Peters D.C.,
    6. Fredrickson E.L.
    . 2009. Do Changes in Connectivity Explain Desertification? Bioscience 59:237-244.
    OpenUrlAbstract/FREE Full Text
    1. Osterkamp W.,
    2. Heilman P.,
    3. Lane L.
    . 1998. Economic considerations of a continental sediment-monitoring program. International Journal of Sediment Research 13:12-24.
    OpenUrlGeoRef
    1. Paige G.B.,
    2. Stone J.J.,
    3. Smith J.R.,
    4. Kennedy J.R.
    . 2004. The walnut gulch rainfall simulator: A computer-controlled variable intensity rainfall simulator. Applied Engineering in Agriculture 20:25-31.
    OpenUrlCrossRef
    1. Pierson F.B.,
    2. Blackburn W.H.,
    3. Van Vactor S.S.,
    4. Wood J.C.
    . 1994. Partitioning small scale spatial variability of runoff and erosion on sagebrush rangeland. Water Resources Bulletin 30:1081-1089.
    OpenUrlCrossRefGeoRef
    1. Pierson F.B.,
    2. Moffet C.A.,
    3. Williams C.J.,
    4. Hardegree S.P.,
    5. Clark P.E.
    . 2009. Prescribed-fire effects on rill and interrill runoff and erosion in a mountainous sagebrush landscape. Earth Surface Processes and Landforms 34:193-203.
    OpenUrlCrossRefGeoRef
    1. Pierson F.B.,
    2. Robichaud P.R.,
    3. Moffet C.A.,
    4. Spaeth K.E.,
    5. Hardegree S.P.,
    6. Clark P.E.,
    7. Williams C.J.
    . 2008. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape. Hydrological Processes 22:2916-2929.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Pierson F.B.,
    2. Spaeth K.E.,
    3. Weltz M.A.,
    4. Carlson D.H.
    . 2002. Hydrologic response of diverse western rangelands. Journal of Range Management 55:558-570.
    OpenUrlCrossRefWeb of Science
    1. Pierson F.B.,
    2. Williams C.J.,
    3. Hardegree S.P.,
    4. Weltz M.A.,
    5. Stone J.J.,
    6. Clark P.E.
    . 2011. Fire, plant invasions, and erosion events on western rangelands. Rangeland Ecology and Management 64:439-449.
    OpenUrlCrossRef
    1. Pierson F.B.,
    2. Williams C.J.,
    3. Kormos P.R.,
    4. Hardegree S.P.,
    5. Clark P.E.,
    6. Rau B.M.
    . 2010. Hydrologic Vulnerability of Sagebrush Steppe Following Pinyon and Juniper Encroachment. Rangeland Ecology and Management 63:614-629.
    OpenUrlCrossRef
    1. Puigdefabregas J.
    2005. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands. Earth Surface Processes and Landforms 30:133-147.
    OpenUrlCrossRefGeoRefWeb of Science
    1. R Development Core Team
    . 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/.
    1. Ravi S.,
    2. D'Odorico P.,
    3. Huxman T.E.,
    4. Collins S.L.
    . 2010. Interactions between soil erosion processes and fires: Implications for the dynamics of fertility islands. Rangeland Ecology and Management 63:267-274.
    OpenUrlCrossRef
    1. Reaney S.M.,
    2. Bracken L.J.,
    3. Kirkby M.J.
    . 2007. Use of the Connectivity of Runoff Model (CRUM) to investigate the influence of storm characteristics on runoff generation and connectivity in semiarid areas. Hydrological Processes 21:894-906.
    OpenUrlCrossRefWeb of Science
    1. Reid K.D.,
    2. Wilcox B.P.,
    3. Breshears D.D.,
    4. MacDonald L.
    . 1999. Runoff and erosion in a piñon–juniper woodland influence of vegetation patches. Soil Science Society of America Journal 63:1869-1879.
    OpenUrlCrossRefWeb of Science
    1. Renard K.G.
    1970. The hydrology of semiarid rangeland watersheds. USDA Publication 01/1970; 41.
    1. Renard K.G.,
    2. Foster G.R.,
    3. Weesies G.A.,
    4. McCool D.,
    5. Yoder D.
    . 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook. Washington, DC: US Government Printing Office.
    1. Renard K.G.,
    2. Foster G.R.,
    3. Weesies G.A.,
    4. Porter J.P.
    . 1991. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation 46(1):30-33.
    OpenUrlFREE Full Text
    1. Ridolfi L.,
    2. Laio F.,
    3. D'Odorico P.
    . 2008. Fertility island formation and evolution in dryland ecosystems. Ecology and Society 13:13.
    OpenUrl
    1. Rieke-Zapp D.H.,
    2. Nearing M.A.
    . 2005. Digital close range photogrammetry for measurement of soil erosion. The Photogrammetric Record 20:69-87.
    OpenUrlCrossRef
    1. Ross M.
    2013. Using the rangeland hydrology and erosion model to assess rangeland management practices on the kaler ranch. Master's thesis, The University of Arizona.
    1. Saco P.M.,
    2. Willgoose G.R.,
    3. Hancock G.R.
    . 2007. Eco-geomorphology of banded vegetation patterns in arid and semiarid regions. Hydrology and Earth System Sciences 11:1717-1730.
    OpenUrlCrossRef
    1. Schlesinger W.H.,
    2. Pilmanis A.M.
    . 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169-187.
    OpenUrlCrossRef
    1. Schlesinger W.H.,
    2. Raikes J.A.,
    3. Hartley A.E.,
    4. Cross A.E.
    . 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology 77:364-374.
    OpenUrlCrossRefWeb of Science
    1. Shainberg I.,
    2. Mamedov A.I.,
    3. Levy G.J.
    . 2003. Role of wetting rate and rain energy in seal formation and erosion 1. Soil Science 168:54-62.
    OpenUrlCrossRef
    1. Blackburn W.H.,
    2. Pierson F.B.,
    3. Schuman G.E.,
    4. Zartman R.
    1. Spaeth K.E.,
    2. Weltz M.A.,
    3. Fox H.D.,
    4. Pierson F.B.
    . 1994. Spatial Pattern Analysis of Sagebrush Vegetation and Potential Influences on Hydrology and Erosion. In Variability in Rangeland Water Erosion Processes, ed. Blackburn W.H., Pierson F.B., Schuman G.E., Zartman R., p. 35-50. Madison, WI: Soil Science Society of America.
    1. Ludwig B.,
    2. Tongway D. J.,
    3. Freudenberger D.,
    4. Noble J.,
    5. Hodgkinson K. C.
    1. Tongway D.J.,
    2. Ludwig B.
    . 1997. The nature of landscape dysfunction in rangelands. In Landscape Ecology, Function and Management: Principles from Australia's Rangelands, ed. Ludwig B., Tongway D. J., Freudenberger D., Noble J., Hodgkinson K. C., p. 49-61. Melbourne, Australia: The Commonwealth Scientific and Industrial Research Organisation.
    1. Toy T.J.,
    2. Foster G.R.
    . 1998. Guidelines for the use of the Revised Universal Soil Loss Equation (RUSLE) Version 1.06 on mined lands. Denver, CO: Construction Sites, and Reclaimed Lands, Western Regional Coordinating Center, Office of Surface Mining.
    1. Toy T.J.,
    2. Foster G.R.,
    3. Renard K.G.
    . 1999. RUSLE for mining, construction and reclamation lands. Journal of Soil and Water Conservation 54(2):462-467.
    OpenUrlAbstract/FREE Full Text
    1. Trieste D.J.,
    2. Gifford G.F.
    . 1980. Application of the Universal Soil Loss Equation to rangelands on a per-storm basis. Journal of Range Management 33:66-70.
    OpenUrlCrossRef
    1. Truman C.C.,
    2. Bradford J.M.,
    3. Ferris J.E.
    . 1990. Antecedent water content and rainfall energy influence on soil aggregates breakdown. Soil Science Society of America Journal 54:1385-1392.
    OpenUrlCrossRefGeoRef
    1. USDA ARS (Agricultural Research Service)
    . 2014. Rangeland Hydrology and Erosion Model version 2.2 Equation summary. Tucson, AZ. http://apps.tucson.ars.ag.gov/rhem/docs.
    1. Valentin C.,
    2. d'Herbes J.M.,
    3. Poesen J.
    . 1999. Soil and water components of banded vegetation patterns. Catena 37:1-24.
    OpenUrlCrossRef
    1. VanAmburg L.,
    2. Booth D.,
    3. Weltz M.,
    4. Trlica M.
    . 2005. A laser point frame to measure cover. Rangeland Ecology & Management 58:557-560.
    OpenUrlCrossRef
    1. Wells S.G.,
    2. McFadden L.D.,
    3. Dohrenwend J.C.
    . 1987. Influence of late quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California. Quaternary Research 27:130-146.
    OpenUrlGeoRefWeb of Science
    1. Weltz M.A.,
    2. Jolley L.,
    3. Hernandez M.,
    4. Spaeth K.E.,
    5. Rossi C.,
    6. Talbot C.,
    7. Nearing M.,
    8. Stone J.,
    9. Goodrich D.,
    10. Pierson F.,
    11. Wei H.,
    12. Morris C.
    . 2014a. Estimating conservation needs for rangelands using National Resources Inventory assessments. Transactions of the American Society of Agricultural and Biological Engineers 57:1559-1570.
    OpenUrl
    1. Weltz M.,
    2. Spaeth K.
    . 2012. Estimating effects of targeted conservation on nonfederal rangelands. Rangelands 34:35-40.
    OpenUrl
    1. Weltz M.A.,
    2. Spaeth K.,
    3. Taylor M.H.,
    4. Rollins K.,
    5. Pierson F.,
    6. Jolley L.,
    7. Nearing M.,
    8. Goodrich D.,
    9. Hernandez M.,
    10. Nouwakpo S.K.,
    11. Rossi C.
    . 2014b. Cheatgrass invasion and woody species encroachment in the Great Basin: Benefits of conservation. Journal of Soil and Water Conservation 69(2):39A-44A, doi:10.2489/jswc.69.2.39A.
    OpenUrlFREE Full Text
    1. Wilcox B.P.,
    2. Breshears D.D.,
    3. Allen C.D.
    . 2003. Ecohydrology of a resource-conserving semiarid woodland: Effects of scale and disturbance. Ecological Monographs 73:223-239.
    OpenUrlCrossRefWeb of Science
    1. Williams C.J.,
    2. Pierson F.B.,
    3. Al-Hamdan O.Z.,
    4. Kormos P.R.,
    5. Hardegree S.P.,
    6. Clark P.E.
    . 2014. Can wildfire serve as an ecohydrologic threshold-reversal mechanism on juniper-encroached shrublands. Ecohydrology 7:453-477.
    OpenUrlCrossRef
    1. Zhang Y.,
    2. Hernandez M.,
    3. Anson E.,
    4. Nearing M.A.,
    5. Wei H.,
    6. Stone J.J.,
    7. Heilman P.
    . 2012. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices. Journal of Soil and Water Conservation 67(5):390-405, doi:10.2489/jswc.67.5.390.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 71 (3)
Journal of Soil and Water Conservation
Vol. 71, Issue 3
May/June 2016
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Performance of the Rangeland Hydrology and Erosion Model for runoff and erosion assessment on a semiarid reclaimed construction site
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Performance of the Rangeland Hydrology and Erosion Model for runoff and erosion assessment on a semiarid reclaimed construction site
S.K. Nouwakpo, M. Weltz, M. Hernandez, T. Champa, J. Fisher
Journal of Soil and Water Conservation May 2016, 71 (3) 220-236; DOI: 10.2489/jswc.71.3.220

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Performance of the Rangeland Hydrology and Erosion Model for runoff and erosion assessment on a semiarid reclaimed construction site
S.K. Nouwakpo, M. Weltz, M. Hernandez, T. Champa, J. Fisher
Journal of Soil and Water Conservation May 2016, 71 (3) 220-236; DOI: 10.2489/jswc.71.3.220
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society