Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

A runoff risk model based on topographic wetness indices and probability distributions of rainfall and soil moisture for central New York agricultural fields

K.L. Hofmeister, C.B. Georgakakos and M.T. Walter
Journal of Soil and Water Conservation July 2016, 71 (4) 289-300; DOI: https://doi.org/10.2489/jswc.71.4.289
K.L. Hofmeister
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.B. Georgakakos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.T. Walter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Akaike H.
    1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716-723.
    OpenUrlCrossRef
    1. Agnew L.J.,
    2. Lyon S.,
    3. Gerard-Marchant P.,
    4. Collins V.B.,
    5. Lembo A.J.,
    6. Steenhuis T.S.,
    7. Walter M.T.
    . 2006. Identifying hydrologically sensitive areas: Bridging the gap between science and application. Journal of Environmental Management 78(1):63-76.
    OpenUrlCrossRefPubMed
    1. Barling R.D.,
    2. Moore I.D,
    3. Grayson R.B.
    . 1994. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resources Research 30(4):1029-1044.
    OpenUrlCrossRef
    1. Beven K.J.,
    2. Freer J.
    . 2001. A dynamic TOPMODEL. Hydrological Processes 15(10):1993-2011.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Beven K.J.,
    2. Kirkby M.J.
    . 1979. A physically based variable contributing area model of basin hydrology. Hydrology Science Bulletin 24(1):43-69.
    OpenUrlCrossRef
    1. Bonferroni C.E.
    1936. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3-6.
    OpenUrl
    1. Borga M.,
    2. Dalla Fontana G.,
    3. Cazorzi F.
    . 2002. Analysis of topographic and climatologic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. Journal of Hydrology 268(1):56-71.
    OpenUrlCrossRefGeoRef
    1. Brenning A.
    2007. RSAGA: SAGA geoprocessing and terrain analysis in R. http://cran.r-project.org/web/packages/RSAGA/index.html.
    1. Brocca L.,
    2. Zucco G.,
    3. Moramarco T.,
    4. Morbidelli R.
    . 2013. Developing and testing a long-term soil moisture data set at the catchment scale. Journal of Hydrology 490:144-151.
    OpenUrlCrossRefGeoRef
    1. Buchanan B.P.,
    2. Archibald J.A.,
    3. Easton Z.M.,
    4. Shaw S.B.,
    5. Schneider R.L.,
    6. Walter M.T.
    . 2013. A phosphorus index that combines critical source areas and transport pathways using a travel time approach. Journal of Hydrology 486:123-135.
    OpenUrlCrossRefGeoRef
    1. Buchanan B.P.,
    2. Fleming M.,
    3. Schneider R.L.,
    4. Richards B.K.,
    5. Archibald J.,
    6. Qiu Z.,
    7. Walter M.T.
    . 2014. Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrology and Earth System Sciences 18(8):3279-3299.
    OpenUrlCrossRef
    1. Burnham K.P.,
    2. Anderson D.R.
    . 2002. Model Selection and Multimodel Interface: A practical information-theoretical approach, 2nd edition. New York: Springer.
    1. Cheng X.,
    2. Dahlke H.S.,
    3. Shaw S.,
    4. Marjerison R.,
    5. Yearick C.,
    6. Walter M.T.
    . 2014. Improving risk estimates of runoff producing areas: Formulating variable source areas as a bivariate process. Journal of Environmental Management 137:146-156.
    OpenUrlCrossRefPubMed
    1. Choi M.,
    2. Jacobs J.M.
    . 2010. Spatial soil moisture scaling structure during Soil Moisture Experiment 2005. Hydrological Processes 25(6):926-932.
    OpenUrl
    1. Dahlke H.E.,
    2. Easton Z.M,
    3. Fuka D.R.,
    4. Lyon S.W,
    5. Steenhuis T.S.
    . 2009. Modelling variable source area dynamics in a CEAP watershed. Ecohydrology 2(3):337-349.
    OpenUrlCrossRef
    1. Dahlke H.E.,
    2. Easton Z.M.,
    3. Walter M.T.,
    4. Steenhuis T.S.
    . 2012. Field test of the variable source area interpretation of the curve number rainfall-runoff equation. Journal of Irrigation and Drainage Engineering 138(3):235-244.
    OpenUrl
    1. Dorigo W.A.,
    2. Xaver A.,
    3. Vreugdenhil M.,
    4. Gruber A.,
    5. Hegyiova A.,
    6. Sanchis-Dufau A.D.,
    7. Zamojski D.,
    8. Cordes C.,
    9. Wagner W.,
    10. Drusch M.
    . 2013. Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal 12(3).
    1. Dosskey M.G.,
    2. Qiu Z.,
    3. Helmers M.J.,
    4. Eisenhauer D.E.
    . 2011. Improved indexes for targeting placement of buffers of Hortonian runoff. Journal of Soil and Water Conservation 66(6):362-372, doi:10.2489/jswc.66.6.362.
    OpenUrlAbstract/FREE Full Text
    1. Dunne T.
    1970. Runoff production in a humid area. USDA Publication Agricultural Research Service (ARS) 41-160. Washington, DC: USDA ARS.
    1. Dunne T.,
    2. Black R.D.
    . 1970. Partial area contributions to storm runoff in a small New England watershed. Water Resources Research 6(5):1296-1311.
    OpenUrlCrossRefWeb of Science
    1. Easton Z.M.,
    2. Fuka D.R.,
    3. Walter M.T.,
    4. Cowan D.M.,
    5. Schneiderman E.M.,
    6. Steenhuis T.S.
    . 2008. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff variable source areas. Journal of Hydrology 348:279-291.
    OpenUrlCrossRef
    1. Endreny T.A.,
    2. Wood E.F.
    . 2003. Watershed weighting of export coefficients to map critical phosphorus loading areas. Journal of the American Water Resources Association 39(1):165-181.
    OpenUrlCrossRef
    1. Frankenberger J.R.,
    2. Brooks E.S.,
    3. Walter M.T.,
    4. Steenhuis T.S.,
    5. Walter M.F.
    . 1999. A GIS-based variable source area hydrological model. Hydrological Processes 13(6):805-822.
    OpenUrlCrossRef
    1. Gburek W.J.,
    2. Drungil C.C.,
    3. Srinivasan M.S.,
    4. Needleman B.A.,
    5. Woodward D.E.
    . 2002. Variable-source-area controls on phosphorus transport: Bridging the gap between research and design. Journal of Soil and Water Conservation 57(6):534-543.
    OpenUrlAbstract/FREE Full Text
    1. Guntner A.,
    2. Seibert J.,
    3. Uhlenbrook S.
    . 2004. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resources Research 40:W05114.
    OpenUrlCrossRef
    1. Sopper W.E.,
    2. Lull H.W.
    1. Hewlett J.D.,
    2. Hibbert A.R.
    . 1967. Factors affecting the response of small watersheds to precipitation in humid regions. In Forest Hydrology, eds. Sopper W.E., Lull H.W., 275-290. Oxford: Pergamon Press.
    1. Hjerdt K.N.,
    2. McDonnell J.J.,
    3. Seibert J.,
    4. Rodhe A.
    . 2004. A new topographic index to quantify downslope controls on local drainage. Water Resources Research 40:WR002864.
    OpenUrl
    1. Hofmeister K.L.
    2015. A Surface Runoff Model for Central New York Agricultural Fields. Master's thesis, Cornell University.
    1. Homer C.G.,
    2. Dewitz J.A.,
    3. Yang L.,
    4. Jin S.,
    5. Danielson P.,
    6. Xian G.,
    7. Coulston J.,
    8. Herold N.D.,
    9. Wickham J.D.,
    10. Megown K.
    . 2015. Completion of the 2011 National Land Cover Database for the conterminous United States – Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81(5):345-354.
    OpenUrl
    1. Horton R.E.
    1933. The role of infiltration in the hydrologic cycle. Transactions American Geophysical Union 14:446-460.
    OpenUrlCrossRef
    1. Horton R.E.
    1940. An approach toward a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings 4:399-417.
    OpenUrlCrossRef
    1. Hu W.,
    2. Shao M.,
    3. Han F.,
    4. Reichardt K.,
    5. Tan J.
    . 2010. Watershed scale temporal stability of soil water content. Geoderma 158(3-4):181-198.
    OpenUrlCrossRefGeoRefWeb of Science
    1. James A.L.,
    2. Roulet N.T.
    . 2007. Investigating hydrologic connectivity and its association with threshold change in runoff response in a temperate forested watershed. Hydrological Processes 21(25):3391-3408.
    OpenUrlCrossRefGeoRef
    1. Ladson A.R.,
    2. Moore I.D.
    . 1992. Soil water prediction on the Konza Prairie by microwave remote sensing and topographic attributes. Journal of Hydrology 138:385-407.
    OpenUrlCrossRefGeoRef
    1. Lanni C.,
    2. McDonnell J.J.,
    3. Rigon R.
    . 2011. On the relative role of upslope and downslope topography for describing water flow path and storage dynamics: A theoretical analysis. Hydrological Processes 25(25):3909-3923.
    OpenUrlCrossRef
    1. Lopez-Vicente M.,
    2. Navas A.,
    3. Machin J.
    . 2009. Effect of physiographic conditions on the spatial variation of seasonal topsoil moisture in Mediterranean soils. Australian Journal of Soil Research 47(5):498-507.
    OpenUrlCrossRefGeoRef
    1. Lyon S.W.,
    2. Lembo A.J. Jr..,
    3. Walter M.T.,
    4. Steenhuis T.S.
    . 2006. Defining probability of saturation with indicator kriging on hard and soft data. Advances in Water Resources 29(2):181-193.
    OpenUrlCrossRef
    1. Lyon S.W.,
    2. Walter M.T.,
    3. Gerard-Marchant P.,
    4. Steenhuis T.S.
    . 2004. Using a topographic index to distribute variable source area runoff predicted with the SCS-Curve Number Equation. Hydrological Processes 18(15):2757-2771.
    OpenUrlCrossRefGeoRef
    1. Marjerison R.D.,
    2. Dahlke H.,
    3. Easton Z.M.,
    4. Seifert S.,
    5. Walter M.T.
    . 2011. A phosphorus index transport factor based on variable source area hydrology for New York State. Journal of Soil and Water Conservation 66(3):149-157, doi:10.2489/jswc.66.3.149.
    OpenUrlAbstract/FREE Full Text
    1. Mehta V.K.,
    2. Walter M.T.,
    3. Brooks E.S.,
    4. Steenhuis T.S.,
    5. Walter M.F.,
    6. Johnson M.,
    7. Boll J.,
    8. Thongs D.
    . 2004. Application of SMR to modeling watersheds in the Catskill Mountains. Environmental Modeling and Assessment 9(2):77-89.
    OpenUrlCrossRef
    1. Moore I.D.,
    2. Burch G.J.,
    3. Mackenzie D.H.
    . 1988. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the American Society of Agricultural Engineers 31(4):1098-1107.
    OpenUrlCrossRef
    1. Needelman B.A.,
    2. Gburek W.J.,
    3. Petersen G.W.,
    4. Sharpley A.N.,
    5. Kleinman P.J.A.
    . 2004. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Science Society of America Journal 68(3):914-923.
    OpenUrlCrossRefGeoRefWeb of Science
    1. NRCC (Northeast Regional Climate Center)
    . 2015. The Ithaca Climate Page. http://www.nrcc.cornell.edu/.
    1. Nyberg L.
    1996. Spatial variability of soil water content in the covered catchment at Gardsjon, Sweden. Hydrological Processes 10(1):89-103.
    OpenUrlCrossRefGeoRef
    1. O'Callaghan J.F.,
    2. Mark D.M.
    . 1984. The extraction of drainage networks from digital elevation, Computer Vision, Graphics, and Image Processing 28:323-344.
    OpenUrlCrossRef
    1. Penna D.,
    2. Borga M.,
    3. Norbiato D.,
    4. Fontana G.D.
    . 2009. Hillslope scale soil moisture variability in a steep alpine terrain. Journal of Hydrology 364:311-327.
    OpenUrlCrossRefGeoRef
    1. Penna D.,
    2. Tromp-van Meerveld H.J.,
    3. Gobbi A.,
    4. Borga M.,
    5. Fontana G.D.
    . 2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Science 15(3):689-702.
    OpenUrlCrossRef
    1. Qiu Z.,
    2. Walter M.T.,
    3. Hall C.
    . 2007. Managing variable source pollution in agricultural watersheds. Journal of Soil and Water Conservation 62(3):115-122.
    OpenUrlAbstract/FREE Full Text
    1. Quin C.,
    2. Zhu A.-X.,
    3. Pei T.,
    4. Li B.,
    5. Zhou C.,
    6. Yang L.
    . 2007. An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. International Journal of Geographical Information Science 21(4):443-458.
    OpenUrlCrossRef
    1. R Core Team
    . 2015. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
    1. Reaney S.M.,
    2. Lane S.N.,
    3. Heathwaite A.L.,
    4. Dugdale L.J.
    . 2011. Risk-based modelling of diffuse land use impacts from rural landscapes upon salmonid fry abundance. Ecological Modeling 222(4):1016-1029.
    OpenUrlCrossRef
    1. Shaw S.B.,
    2. Walter M.T.
    . 2009. Estimating storm runoff risk using bivariate frequency analyses of rainfall and antecedent watershed wetness. Water Resources Research 45:W03404.
    OpenUrlCrossRef
    1. Schneiderman E.M.,
    2. Steenhuis T.S.,
    3. Thongs D.J.,
    4. Easton Z.M.,
    5. Zion M.S.,
    6. Neal A.L.,
    7. Mendoza G.F.,
    8. Walter M.T.
    . 2007. Incorporating variable source hydrology into a curve-number-based watershed model. Hydrological Processes 21(25):3420-3430.
    OpenUrlCrossRef
    1. Seibert J.,
    2. McGlynn B.L.
    . 2007. A new triangular multiple flow direction algorithm for computing upslope area from gridded digital elevation models. Water Resources Research 43(4):1-8.
    OpenUrlPubMedWeb of Science
    1. Sorensen R.,
    2. Zinko U.,
    3. Seibert J.
    . 2006. On the calculation of the topographic wetness index: Evaluation of different methods based on field observations. Hydrology and Earth System Sciences 10(1):101-112.
    OpenUrlCrossRef
    1. Tague C.,
    2. Band L.,
    3. Kenworthy S.,
    4. Tenenbaum D.
    . 2010. Plot- and watershed-scale soil moisture variability in a humid Piedmont watershed. Water Resources Research 46:W12541.
    OpenUrl
    1. Tarboton D.G.
    1997. A new method for determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33(2):309-319.
    OpenUrlCrossRefWeb of Science
    1. Tenenbaum D.E.,
    2. Band L.E.,
    3. Kenworthy S.T.,
    4. Tague C.L.
    . 2006. Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high-resolution photogrammetric and LIDAR digital elevation data sets. Hydrological Processes 20(2):219-240.
    OpenUrlCrossRefGeoRef
    1. Tomer M.D.,
    2. Locke M.A.
    . 2011. The challenge of documenting water quality benefits of conservation practices: A review of USDA Agricultural Research Services' conservation effects assessment project watershed studies. Water Science and Technology 64(1):300-310.
    OpenUrlAbstract/FREE Full Text
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2009. Soil Data Viewer. http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/soils/home/?cid=nrcs142p2_053620.
    1. USEPA (US Environmental Protection Agency)
    . 2009. National Water Quality Inventory: Report to Congress: 2004 Reporting Cycle., EPA 841-R-08-001. Washington, DC: US Environmental Protection Agency, Office of Water.
    1. Wagner W.,
    2. Naeimi V.,
    3. Scipal K.,
    4. De Jeu R.A.M.,
    5. Martinez-Fernandez J.
    . 2007. Soil moisture from operational meteorological satellites. Hydrogeology Journal 15(1):121-131.
    OpenUrlCrossRefGeoRef
    1. Walter M.T.,
    2. Mehta V.K.,
    3. Marrone A.M.,
    4. Boll J.,
    5. Gerard-Marchant P.,
    6. Steenhuis T.S.,
    7. Walter M.F.
    . 2003. Simple estimation of prevalence of Hortonian flow in New York City watersheds. Journal of Hydrologic Engineering 8(4):214-218.
    OpenUrlCrossRef
    1. Walter M.T.,
    2. Steenhuis T.S.,
    3. Mehta V.K.,
    4. Thongs D.,
    5. Zion M.,
    6. Schneiderman E.
    . 2002. Refined conceptualization of TOPMODEL for shallow subsurface flows. Hydrological Processes 16(10):2041-2046.
    OpenUrlCrossRefGeoRef
    1. Walter M.T.,
    2. Walter M.F.,
    3. Brooks E.S.,
    4. Steenhuis T.S.,
    5. Boll J.,
    6. Weiler K.R.
    . 2000. Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment. Journal of Soil and Water Conservation 55(3):277-284.
    OpenUrlAbstract/FREE Full Text
    1. Western A.W.,
    2. Grayson R.B.,
    3. Bloschl G.
    . 2002. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences 30(1):149-180.
    OpenUrlCrossRefWeb of Science
    1. Western A.W.,
    2. Grayson R.B.,
    3. Bloschl G.,
    4. Willgoose G.R.,
    5. McMahon T.A.
    . 1999. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research 35(3):797-810.
    OpenUrlCrossRefGeoRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 71 (4)
Journal of Soil and Water Conservation
Vol. 71, Issue 4
July/August 2016
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A runoff risk model based on topographic wetness indices and probability distributions of rainfall and soil moisture for central New York agricultural fields
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A runoff risk model based on topographic wetness indices and probability distributions of rainfall and soil moisture for central New York agricultural fields
K.L. Hofmeister, C.B. Georgakakos, M.T. Walter
Journal of Soil and Water Conservation Jul 2016, 71 (4) 289-300; DOI: 10.2489/jswc.71.4.289

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A runoff risk model based on topographic wetness indices and probability distributions of rainfall and soil moisture for central New York agricultural fields
K.L. Hofmeister, C.B. Georgakakos, M.T. Walter
Journal of Soil and Water Conservation Jul 2016, 71 (4) 289-300; DOI: 10.2489/jswc.71.4.289
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

Research Section

  • Sources of sediments during rainfall in the dry-hot valley region of China on a small watershed scale
  • The effects of soil aeration prior to dairy manure application on edge-of-field hydrology and nutrient fluxes in cold climate hayland agroecosystems
  • Effect of soil and water conservation measures on the reduction of runoff and sediment load in a loess hilly-gully region
Show more Research Section

Research Manuscripts

  • Soil water infiltration impacted by maize (Zea mays L.) growth on sloping agricultural land of the Loess Plateau
  • Estimating biofuel feedstock water footprints using system dynamics
  • Occurrence, sources, and cancer risk of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in agricultural soils from the Three Gorges Dam region, China
Show more Research Manuscripts

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2021 Soil and Water Conservation Society