Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Living cover crops have immediate impacts on soil microbial community structure and function

D.M. Finney, J.S. Buyer and J.P. Kaye
Journal of Soil and Water Conservation July 2017, 72 (4) 361-373; DOI: https://doi.org/10.2489/jswc.72.4.361
D.M. Finney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.S. Buyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Kaye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Cover cropping is a widely promoted strategy to enhance soil health in agricultural systems. Despite a substantial body of literature demonstrating links between cover crops and soil biology, an important component of soil health, research evaluating how specific cover crop species influence soil microbial communities remains limited. This study examined the effects of eight fall-sown cover crop species grown singly and in multispecies mixtures on microbial community structure and soil biological activity using phospholipid fatty acid (PLFA) profiles and daily respiration rates, respectively. Fourteen cover crop treatments and a no cover crop control were established in August of 2011 and 2012 on adjacent fields in central Pennsylvania following spring oats (Avena sativa L.). Soil communities were sampled from bulk soil collected to a depth of 20 cm (7.9 in) in fall and spring, approximately two and nine months after cover crop planting and prior to cover crop termination. In both fall and spring, cover crops led to an increase in total PLFA concentration relative to the arable weed community present in control plots (increases of 5.37 nmol g−1 and 10.20 nmol g−1, respectively). While there was a positive correlation between aboveground plant biomass (whether from arable weeds or cover crops) and total PLFA concentration, we also found that individual cover crop species favored particular microbial functional groups. Arbuscular mycorrhizal (AM) fungi were more abundant beneath oat and cereal rye (Secale cereale L.) cover crops. Non-AM fungi were positively associated with hairy vetch (Vicia villosa L.). These cover crop-microbial group associations were present not only in monocultures, but also multispecies cover crop mixtures. Arable weed communities were associated with higher proportions of actinomycetes and Gram-positive bacteria. Soil biological activity varied by treatment and was positively correlated with both the size and composition (fungal:bacterial ratio) of the microbial community. This research establishes a clear link between cover crops, microbial communities, and soil health. We have shown that while cover crops generally promote microbial biomass and activity, there are species-specific cover crop effects on soil microbial community composition that ultimately influence soil biological activity. This discovery paves the way for intentional management of the soil microbiome to enhance soil health through cover crop selection.

  • © 2017 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 72 (4)
Journal of Soil and Water Conservation
Vol. 72, Issue 4
July/August 2017
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Living cover crops have immediate impacts on soil microbial community structure and function
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Living cover crops have immediate impacts on soil microbial community structure and function
D.M. Finney, J.S. Buyer, J.P. Kaye
Journal of Soil and Water Conservation Jul 2017, 72 (4) 361-373; DOI: 10.2489/jswc.72.4.361

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Living cover crops have immediate impacts on soil microbial community structure and function
D.M. Finney, J.S. Buyer, J.P. Kaye
Journal of Soil and Water Conservation Jul 2017, 72 (4) 361-373; DOI: 10.2489/jswc.72.4.361
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Multispecies cover cropping promotes soil health in no-tillage cropping systems of North Carolina
  • Crop diversity increases disease suppressive capacity of soil microbiomes
  • Investigation of short-term effects of winter cover crops on compaction and total soil carbon in a long-term no-till agricultural system
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society