Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Living cover crops have immediate impacts on soil microbial community structure and function

D.M. Finney, J.S. Buyer and J.P. Kaye
Journal of Soil and Water Conservation July 2017, 72 (4) 361-373; DOI: https://doi.org/10.2489/jswc.72.4.361
D.M. Finney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.S. Buyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Kaye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Berg G.,
    2. Smalla K.
    . 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. Federation of European Microbiological Societies (FEMS) Microbiology Ecology 68(1):1-13.
    OpenUrl
    1. Bezemer T.M.,
    2. Fountain M.T.,
    3. Barea J.M.,
    4. Christensen S.,
    5. Dekker S.C.,
    6. Duyts H.,
    7. van Hal R.,
    8. Harvey J.A.,
    9. Hedlund K.,
    10. Maraun M.,
    11. Mikola J.,
    12. Mladenov A.G.,
    13. Robin C.,
    14. de Ruiter P.C.,
    15. Scheu S.,
    16. Setälä H.,
    17. Šmilauer P.,
    18. van der Putten W.H.
    . 2010. Divergent composition but similar function of soil food webs of individual plants: Plant species and community effects. Ecology 91(10):3027-36.
    OpenUrlCrossRefPubMedWeb of Science
    1. Borcard D.,
    2. Gillet F.,
    3. Legendre P.
    . 2011. Numerical Ecology with R. New York: Springer.
    1. Bossio D.A.,
    2. Scow K.M.,
    3. Gunapala N.,
    4. Graham K.J.
    . 1998. Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles. Microbial Ecology 36(1):1-12.
    OpenUrlCrossRefPubMedWeb of Science
    1. Brundrett M.C.
    2002. Tansley review No. 134. Coevolution of roots and mycorrhizas of land plants. New Phytologist 154(2):275-304.
    OpenUrlCrossRefWeb of Science
    1. Buyer J.S.,
    2. Roberts D.P.,
    3. Russek-Cohen E.
    . 2002. Soil and plant effects on microbial community structure. Canadian Journal of Microbiology 48(11):955-64.
    OpenUrlCrossRefPubMedWeb of Science
    1. Buyer J.S.,
    2. Sasser M.
    . 2012. High throughput phospholipid fatty acid analysis of soils. Applied Soil Ecology 61:127-30.
    OpenUrl
    1. Buyer J.S.,
    2. Teasdale J.R.,
    3. Roberts D.P.,
    4. Zasada I.A.,
    5. Maul J.E.
    . 2010. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry 42(5):831-41.
    OpenUrlCrossRef
    1. Carrera L.M.,
    2. Buyer J.S.,
    3. Vinyard B.,
    4. Abdul-Baki A.A.,
    5. Sikora L.J.,
    6. Teasdale J.R.
    . 2007. Effects of cover crops, compost, and manure amendments on soil microbial community structure in tomato production systems. Applied Soil Ecology 37(3):247-55.
    OpenUrl
    1. Denef K.,
    2. Roobroeck D.,
    3. Manimel Wadu M.C.W.,
    4. Lootens P.,
    5. Boeckx P.
    . 2009. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biology and Biochemistry 41(1):144-53.
    OpenUrl
    1. Sparks D.L.
    1. Doran J.W.,
    2. Sarrantonio M.,
    3. Liebig M.
    . 1996. Soil health and sustainability. In Advances in Agronomy, ed. Sparks D.L., 1-54. San Diego: Academic Press.
    1. Drenovsky R.E.,
    2. Vo D.,
    3. Graham K.J.,
    4. Scow K.M.
    . 2004. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology 48(3):424-30.
    OpenUrlCrossRefPubMedWeb of Science
    1. Eisenhauer N.,
    2. Beßler H.,
    3. Engels C.,
    4. Gleixner G.,
    5. Habekost M.,
    6. Milcu A.,
    7. Partsch S.,
    8. Sabais A.C.W.,
    9. Scherber C.,
    10. Steinbeiss S.,
    11. Weigelt A.,
    12. Weisser W.W.,
    13. Scheu S.
    . 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91(2):485-96.
    OpenUrlCrossRefPubMedWeb of Science
    1. Fierer N.,
    2. Bradford M.A.,
    3. Jackson R.B.
    . 2007. Toward an ecological classification of soil bacteria. Ecology 88(6):1354-64.
    OpenUrlCrossRefPubMedWeb of Science
    1. Fierer N.,
    2. Jackson R.B.
    . 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103(3):626-31.
    OpenUrlAbstract/FREE Full Text
    1. Finney D.M.,
    2. White C.M.,
    3. Kaye J.P.
    . 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal 108(1):39-52.
    OpenUrl
    1. Frostegård Å.,
    2. Tunlid A.,
    3. Bååth E.
    . 2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry 43(8):1621-25.
    OpenUrl
    1. Girvan M.S.,
    2. Bullimore J.,
    3. Pretty J.N.,
    4. Osborn A.M.,
    5. Ball A.S.
    . 2003. Soil type us the primary determinant of the composition of the total and active bacterial communities in arable soils. Applied and Environmental Microbiology 69(3):1800-1809.
    OpenUrlAbstract/FREE Full Text
    1. Grayston S.,
    2. Campbell C.D.,
    3. Bardgett R.D.,
    4. Mawdsley J.L.,
    5. Clegg C.D.,
    6. Ritzc K.,
    7. Griffiths B.S.,
    8. Rodwell J.S.,
    9. Edwards S.J.,
    10. Davies W.J.,
    11. Elston D.J.,
    12. Millard P.
    . 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management intensity using CLPP, PLFA and community DNA techniques. Applied Soil Ecology 25(1):63-84.
    OpenUrlCrossRefWeb of Science
    1. Hollister E.B.,
    2. Hu P.,
    3. Wang A.S.,
    4. Hons F.M.,
    5. Gentry T.J.
    . 2013. Differential impacts of brassicaceous and nonbrassicaceous oilseed meals on soil bacterial and fungal communities. Federation of European Microbiological Societies (FEMS) Microbiology Ecology 83(3):632-41.
    OpenUrl
    1. Ingels C.A.,
    2. Scow K.M.,
    3. Whisson D.A.,
    4. Drenovsky R.E.
    . 2005. Effects of cover crops on grapevines, yield, juice composition, soil microbial ecology, and gopher activity. American Journal of Enology and Viticulture 56(1):19-29.
    OpenUrlAbstract/FREE Full Text
    1. Joergensen R.G.,
    2. Wichern F.
    . 2008. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry 40(12):2977-91.
    OpenUrl
    1. Kabir Z.,
    2. Koide R.T.
    . 2000. The effect of dandelion or a cover crop on mycorrhiza inoculum potential, soil aggregation and yield of maize. Agriculture, Ecosystems and Environment 78:167-74.
    OpenUrl
    1. Kabir Z.,
    2. Koide R.T.
    . 2002. Effect of autumn and winter mycorrhizal cover crops on soil properties, nutrient uptake and yield of sweet corn in Pennsylvania, USA. Plant and Soil 238:205-15.
    OpenUrlCrossRefWeb of Science
    1. Kabir Z.,
    2. O'Halloran I.P.,
    3. Hamel C.
    . 1997. Overwinter survival of arbuscular mycorrhizal hyphae is favored by attachment to roots but diminished by disturbance. Mycorrhiza 7(4):197-200.
    OpenUrlCrossRefWeb of Science
    1. Kong A.Y.,
    2. Six J.
    . 2012. Microbial community assimilation of cover crop rhizodeposition within soil microenvironments in alternative and conventional cropping systems. Plant and Soil 356(1-2):315-30.
    OpenUrl
    1. Lehman R.M.,
    2. Taheri W.I.,
    3. Osborne S.L.,
    4. Buyer J.S.,
    5. Douds D.D. Jr..
    2012. Fall cover cropping can increase arbuscular mycorrhizae in soils supporting intensive agricultural production. Applied Soil Ecology 61:300-304.
    OpenUrlCrossRef
    1. Lehman R.M.,
    2. Acosta-Martínez V.,
    3. Buyer J.S.,
    4. Cambardella C.A.,
    5. Collins H.P.,
    6. Ducey T.F.,
    7. Halvorson J.J.,
    8. Jin V.L.,
    9. Johnson J.M.F.,
    10. Kremer R.J.,
    11. Lundgren J.G.,
    12. Manter D.K.,
    13. Maul J.E.,
    14. Smith J.L.,
    15. Stott D.E.
    . 2015a. Soil biology for resilient, healthy soil. Journal of Soil and Water Conservation 70(1):12A-18A, doi:10.2489/jswc.70.1.12A.
    OpenUrlFREE Full Text
    1. Lehman R.M.,
    2. Cambardella C.A.,
    3. Stott D.E.,
    4. Acosta-Martinez V.,
    5. Manter D.K.,
    6. Buyer J.S.,
    7. Maul J.E.,
    8. Smith J.L.,
    9. Collins H.P.,
    10. Halvorson J.J.,
    11. Kremer R.J.,
    12. Lundgren J.G.,
    13. Ducey T.F.,
    14. Jin V.L.,
    15. Karlen D.L.
    . 2015b. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability 7(1):988-1027.
    OpenUrl
    1. Lennon J.T.,
    2. Aanderud Z.T.,
    3. Lehmkuhl B.K.,
    4. Schoolmaster D.R.
    . 2012. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93(8):1867-79.
    OpenUrlCrossRefPubMedWeb of Science
    1. Lienhard P.,
    2. Terrat S.,
    3. Chemidlin Prévost-Bouré N.,
    4. Nowak V.,
    5. Régnier T.,
    6. Sayphoummie S.,
    7. Panyasiri K.,
    8. Tivet F.,
    9. Mathieu O.,
    10. Levêque J.,
    11. Maron P.A.,
    12. Ranjard L.
    . 2014. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agronomy for Sustainable Development 34(2):525-33.
    OpenUrl
    1. Mackie K.A.,
    2. Schmidt H.P.,
    3. Müller T.,
    4. Kandeler E.
    . 2014. Cover crops influence soil microorganisms and phytoextraction of copper from a moderately contaminated vineyard. Science of the Total Environment 500-501:34-43.
    OpenUrl
    1. Maul J.E.,
    2. Buyer J.S.,
    3. Lehman R.M.,
    4. Culman S.,
    5. Blackwood C.B.,
    6. Roberts D.P.,
    7. Zasada I.A.,
    8. Teasdale J.R.
    . 2014. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Applied Soil Ecology 77:42-50.
    OpenUrlCrossRef
    1. Maul J.E.,
    2. Drinkwater L.E.
    . 2010. Short-term plant species impact on microbial community structure in soils with long-term agricultural history. Plant and Soil 330(1-2):369-82.
    OpenUrl
    1. McCune B.,
    2. Grace J.B.
    . 2002. Analysis of Ecological Communities. Gleneden Beach, OR: MjM Software.
    1. McDaniel M.D.,
    2. Kaye J.P.,
    3. Kaye M.W.,
    4. Bruns M.A.
    . 2014a. Climate change interactions affect soil carbon dioxide efflux and microbial functioning in a post-harvest forest. Oecologia 174(4):1437-48.
    OpenUrlCrossRef
    1. McDaniel M.D.,
    2. Tiemann L.K.,
    3. Grandy A.S.
    . 2014b. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications 24(3):560-70.
    OpenUrl
    1. Nair A.,
    2. Ngouajio M.
    . 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology 58:45-55.
    OpenUrlCrossRef
    1. Olsson A.
    1999. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. Federation of European Microbiological Societies (FEMS) Microbiology Ecology 29:303-10.
    OpenUrl
    1. Qiao Y.J.,
    2. Li Z.Z.,
    3. Wang X.,
    4. Zhu B.
    . 2012. Effect of legume-cereal mixtures on the diversity of bacterial communities in the rhizosphere. Plant, Soil and Environment 58:174-80.
    OpenUrl
    1. R Development Core Team
    . 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
    1. Regan K.M.,
    2. Nunan N.,
    3. Boeddinghaus R.S.,
    4. Baumgartner V.,
    5. Berner D.,
    6. Boch S.,
    7. Oelmann Y.,
    8. Overmann J.,
    9. Prati D.,
    10. Schloter M.,
    11. Schmitt B.,
    12. Sorkau E.,
    13. Steffens M.,
    14. Kandeler E.,
    15. Marhan S.
    . 2014. Seasonal controls on grassland microbial biogeography: Are they governed by plants, abiotic properties or both? Soil Biology and Biochemistry 71:21-30.
    OpenUrl
    1. Rillig M.C.
    2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7:740-54.
    OpenUrlCrossRefWeb of Science
    1. Rumberger A.,
    2. Marschner P.
    . 2003. 2-phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biology and Biochemistry 35(3):445-52.
    OpenUrl
    1. Saison C.,
    2. Degrange V.,
    3. Oliver R.,
    4. Millard P.,
    5. Commeaux C.,
    6. Le Roux X.
    . 2006. Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost-borne microbial community. Environmental Microbiology 8(2):247-57.
    OpenUrlCrossRefPubMedWeb of Science
    1. Schipanski M.E.,
    2. Barbercheck M.,
    3. Douglas M.R.,
    4. Finney D.M.,
    5. Haider K.,
    6. Kaye J.P.,
    7. Kemanian A.R.,
    8. Mortensen D.A.,
    9. Ryand M.R.,
    10. Tooker J.,
    11. White C.
    . 2014. A Framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems 125:12-22.
    OpenUrlCrossRef
    1. Schutter M.E.,
    2. Sandeno J.M.,
    3. Dick R.P.
    . 2001. Seasonal, soil type, and alternative management influences on microbial communities of vegetable cropping systems. Biology and Fertility of Soils 34(6):397-410.
    OpenUrl
    1. Searle S.R.,
    2. Speed F.M.,
    3. Milliken G.A.
    . 1980. Population marginal means in the linear model: An alternative to least squares means. The American Statistician 34(4):216-21.
    OpenUrlCrossRefWeb of Science
    1. Sharma M.P.,
    2. Buyer J.S.
    . 2015. Comparison of biochemical and microscopic methods for quantification of arbuscular mycorrhizal fungi in soil and roots. Applied Soil Ecology 95:86-89.
    OpenUrl
    1. Six J.,
    2. Elliott E.T.,
    3. Paustian K.
    . 1999. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal 63:1350-58.
    OpenUrlCrossRefWeb of Science
    1. Six J.,
    2. Frey S.D.,
    3. Thiet R.K.,
    4. Batten K.M.
    . 2006. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal 70:555-69.
    OpenUrlCrossRefWeb of Science
    1. Tiemann L.K.,
    2. Grandy A.S.,
    3. Atkinson E.E.,
    4. Marin-Spiotta E.,
    5. McDaniel M.D.
    . 2015. Crop Rotational Diversity Enhances Belowground Communities and Functions in an Agroecosystem. Ecology Letters 18:761-71.
    OpenUrl
    1. Treonis A.M.,
    2. Austin E.E.,
    3. Buyer J.S.,
    4. Maul J.E.,
    5. Spicer L.,
    6. Zasada I.A.
    . 2010. Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology 46(1):103-10.
    OpenUrlCrossRefWeb of Science
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2012. Farming in the 21st Century. Washington, DC: USDA.
    1. Vierheilig H.,
    2. Bennett R.,
    3. Kiddle G.,
    4. Kaldorf M.,
    5. Ludwig-Muller J.
    . 2000. Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytologist 146(2):343-52.
    OpenUrlCrossRefWeb of Science
    1. Wang Q.R.,
    2. Li Y.C.,
    3. Klassen W.
    . 2007. Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field. Journal of Plant Nutrition 30(4):623-39.
    OpenUrl
    1. Wardle D.A.,
    2. Bardgett R.D.,
    3. Klironomos J.N.,
    4. Setala H.,
    5. van der Putten W.H.,
    6. Wall D.H.
    . 2004. Ecological linkages between aboveground and belowground biota. Science 304(5677):1629-33.
    OpenUrlAbstract/FREE Full Text
    1. Weitzman J.N.,
    2. Forshay K.J.,
    3. Kaye J.P.,
    4. Meyer P.M.,
    5. Koval J.C.,
    6. Walter R.C.
    . 2014. Potential nitrogen and carbon processing in a landscape rich in milldam legacy sediments. Biogeochemistry 120(1-3):337-57.
    OpenUrl
    1. White C.M.,
    2. Weil R.R.
    . 2010. Forage radish and cereal rye cover crop effects on mycorrhizal fungus colonization of maize roots. Plant Soil 328:507-21.
    OpenUrlCrossRef
    1. Wortman S.E.,
    2. Drijber R.A.,
    3. Francis C.A.,
    4. Lindquist J.L.
    . 2013. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Applied Soil Ecology 72:232-41.
    OpenUrl
    1. Zak D.R.,
    2. Holmes W.,
    3. White D.C.,
    4. Tilman D.
    . 2003. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology 84(8):2042-50.
    OpenUrlCrossRefWeb of Science
    1. Zelles L.
    1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils 29:111-29.
    OpenUrlCrossRefWeb of Science
    1. Zelles L.,
    2. Palojärvi A.,
    3. Kandeler E.,
    4. von Lützow M.,
    5. Winter K.,
    6. Bai Q.Y.
    . 1997. Changes in soil microbial properties and phospholipid fatty acid fractions after chloroform fumigation. Soil Biology and Biochemistry 29(9-10):1325-1336.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 72 (4)
Journal of Soil and Water Conservation
Vol. 72, Issue 4
July/August 2017
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Living cover crops have immediate impacts on soil microbial community structure and function
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 12 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Living cover crops have immediate impacts on soil microbial community structure and function
D.M. Finney, J.S. Buyer, J.P. Kaye
Journal of Soil and Water Conservation Jul 2017, 72 (4) 361-373; DOI: 10.2489/jswc.72.4.361

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Living cover crops have immediate impacts on soil microbial community structure and function
D.M. Finney, J.S. Buyer, J.P. Kaye
Journal of Soil and Water Conservation Jul 2017, 72 (4) 361-373; DOI: 10.2489/jswc.72.4.361
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Multispecies cover cropping promotes soil health in no-tillage cropping systems of North Carolina
  • Crop diversity increases disease suppressive capacity of soil microbiomes
  • Investigation of short-term effects of winter cover crops on compaction and total soil carbon in a long-term no-till agricultural system
  • Google Scholar

More in this TOC Section

  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society