Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Deep soil carbon after 44 years of tillage and fertilizer management in southern Illinois compared to forest and restored prairie soils

M.K. Walia, S.G. Baer, R. Krausz and R.L. Cook
Journal of Soil and Water Conservation July 2017, 72 (4) 405-415; DOI: https://doi.org/10.2489/jswc.72.4.405
M.K. Walia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.G. Baer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Krausz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.L. Cook
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

No-till (NT) management can reduce soil erosion and increase soil carbon (C) in agricultural systems, but there is less certainty regarding deeper soil and how long-term tillage and fertilization practices compare to other land-use systems. The objective of this study was to quantify tillage and fertilizer management effects after 44 years (20 years in continuous corn [Zea mays L.] and 24 years in corn–soybean [Glycine max L.] rotation) on bulk density and soil C concentrations and stocks to a 1 m (3.3 ft) depth in a somewhat poorly drained Bethalto silt loam near Belleville, Illinois, and compare to nearby forest and restored prairie soils. Four tillage (moldboard plow, chisel tillage [ChT], alternate tillage, and NT) and five fertilizer (no fertilization control, nitrogen [N]-only, N + N-phosphorus-potassium [NPK] starter, NPK + NPKstarter, and NPK broadcast) treatments showed bulk density was lower in NT than moldboard plow treatments in 0 to 15 (0 to 6 in) and 25 to 50 cm (10 to 20 in) depths. Complete NPK treatments generally resulted in higher C stocks than N-only and control treatments from 0 to 25 cm (0 to 10 in), but no differences were detected from 25 to 100 cm (10 to 39 in) or 0 to 100 cm (0 to 39 in) due to fertilizer. No-till management increased C stocks compared to tillage treatments for 0 to 15 cm (0 to 6 in) and was greater than the ChT treatment for 0 to 100 cm (0 to 39 in). No-till/NPK maintained greater cumulative soil C stocks to 1 m than either undisturbed forest soils or restored prairie soils. Additionally, NT/NPK had the maximum soil C increase over time of 0.36 Mg C ha−1 y−1 (0.16 tn C ac−1 yr−1) for the top 15 cm (6 in) over 44 years.

  • © 2017 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 72 (4)
Journal of Soil and Water Conservation
Vol. 72, Issue 4
July/August 2017
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Deep soil carbon after 44 years of tillage and fertilizer management in southern Illinois compared to forest and restored prairie soils
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Deep soil carbon after 44 years of tillage and fertilizer management in southern Illinois compared to forest and restored prairie soils
M.K. Walia, S.G. Baer, R. Krausz, R.L. Cook
Journal of Soil and Water Conservation Jul 2017, 72 (4) 405-415; DOI: 10.2489/jswc.72.4.405

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Deep soil carbon after 44 years of tillage and fertilizer management in southern Illinois compared to forest and restored prairie soils
M.K. Walia, S.G. Baer, R. Krausz, R.L. Cook
Journal of Soil and Water Conservation Jul 2017, 72 (4) 405-415; DOI: 10.2489/jswc.72.4.405
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Eco-intensification through soil carbon sequestration: Harnessing ecosystem services and advancing sustainable development goals
  • Google Scholar

More in this TOC Section

  • Assessing Soil Vulnerability Index classification with respect to rainfall characteristics
  • Trade-off analysis of water conservation and water consumption of typical ecosystems at different climatic scales in the Dongjiang River basin, China
  • Long-term subsoiling and straw return increase soil organic carbon fractions and crop yield
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society