Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Applying fingerprint Fourier transformed infrared spectroscopy and chemometrics to assess soil ecosystem disturbance and recovery

J.J. Maynard and M.G. Johnson
Journal of Soil and Water Conservation July 2018, 73 (4) 443-451; DOI: https://doi.org/10.2489/jswc.73.4.443
J.J. Maynard
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.G. Johnson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Anderson T.-H.
    2003. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment 98(1-3):285-293.
    OpenUrlCrossRefWeb of Science
    1. Andrews S.S.,
    2. Karlen D.L.,
    3. Cambardella C.A.
    . 2004. The Soil Management Assessment Framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal 68(6):1945-1962.
    OpenUrlCrossRefWeb of Science
    1. Andrews S.S.,
    2. Karlen D.L.,
    3. Mitchell J.P.
    . 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture Ecosystems & Environment 90(1):25-45.
    OpenUrl
    1. Artz R.R.E.,
    2. Chapman S.J.,
    3. Jean Robertson A.H.,
    4. Potts J.M.,
    5. Laggoun-Défarge F.,
    6. Gogo S.,
    7. Comont L.,
    8. Disnar J.-R.,
    9. Francez A.-J.
    . 2008. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biology and Biochemistry 40(2):515-527.
    OpenUrlCrossRef
    1. Bastida F.,
    2. Zsolnay A.,
    3. Hernández T.,
    4. García C.
    . 2008. Past, present and future of soil quality indices: A biological perspective. Geoderma 147(3-4):159-171.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Beleites C.,
    2. Sergo V.
    . 2015. hyperSpec: A package to handle hyperspectral data sets in R. Wölfersheim, Germany: hyperSpec.
    1. Bellon-Maurel V.,
    2. McBratney A.
    . 2011. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – Critical review and research perspectives. Soil Biology and Biochemistry 43(7):1398-1410.
    OpenUrl
    1. Daily G.C.
    1995. Restoring value to the world's degraded lands. Science 269(5222):350-354.
    OpenUrlAbstract/FREE Full Text
    1. Djuuna I.A.F.,
    2. Abbott L.,
    3. Russell C.
    . 2011. Determination and prediction of some soil properties using partial least square (PLS) calibration and mid-infra red (MIR) spectroscopy analysis. Journal of Tropical Soils 16(2):93-98.
    OpenUrl
    1. Doran J.W.,
    2. Jones A.J.
    . 1996. Methods for Assessing Soil Quality. Madison, WI: Soil Science Society of America.
    1. Elliott G.N.,
    2. Worgan H.,
    3. Broadhurst D.,
    4. Draper J.,
    5. Scullion J.
    . 2007. Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology and Biochemistry 39(11):2888-2896.
    OpenUrl
    1. Gidman E.,
    2. Goodacre R.,
    3. Emmett B.,
    4. Sheppard L.J.,
    5. Leith I.D.,
    6. Gwynn-Jones D.
    . 2005. Applying metabolic fingerprinting to ecology: The use of Fourier-transform infrared spectroscopy for the rapid screening of plant responses to N deposition. Water, Air, & Soil Pollution: Focus 4(6):251-258.
    OpenUrl
    1. Gil-Sotres F.,
    2. Trasar-Cepeda C.,
    3. Leirós M.C.,
    4. Seoane S.
    . 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry 37(5):877-887.
    OpenUrl
    1. Goodacre R.,
    2. Timmins E.M.,
    3. Burton R.,
    4. Kaderbhai N.,
    5. Woodward A.M.,
    6. Kell D.B.,
    7. Rooney P.J.
    . 1998. Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144(5):1157-1170.
    OpenUrlCrossRefPubMedWeb of Science
    1. Hart P.B.S.,
    2. August J.A.,
    3. West A.W.
    . 1989. Long-term consequences of topsoil mining on select biological and physical characteristics of two New Zealand loessial soils under grazed pasture. Land Degradation & Development 1(2):77-88.
    OpenUrl
    1. Helm D.,
    2. Labischinski H.,
    3. Schallehn G.,
    4. Naumann D.
    . 1991. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. Journal of General Microbiology 137(1):69-79.
    OpenUrlCrossRefPubMedWeb of Science
    1. Idowu O.J.,
    2. van Es H.M.,
    3. Abawi G.S.,
    4. Wolfe D.W.,
    5. Schindelbeck R.R.,
    6. Moebius-Clune B.N.,
    7. Gugino B.K.
    . 2009. Use of an integrative soil health test for evaluation of soil management impacts. Renewable Agriculture and Food Systems 24(3):214.
    OpenUrl
    1. Insam H.,
    2. Domsch K.H.
    . 1988. Relationship between soil organic carbon and microbial of reclamation sites. Microbial Ecology 15(2):177-188.
    OpenUrlCrossRefPubMedWeb of Science
    1. Janik L.J.,
    2. Skjemstad J.O.,
    3. Merry R.H.
    . 1998. Can mid infrared diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture 38(7):681.
    OpenUrlCrossRef
    1. Johnson H.E.,
    2. Broadhurst D.,
    3. Goodacre R.,
    4. Smith A.R.
    . 2003. Metabolic fingerprinting of salt-stressed tomatoes. Phytochemistry 62(6):919-928.
    OpenUrlCrossRefPubMedWeb of Science
    1. Jombart T.
    2013. A tutorial for Discriminant Analysis of Principal Components (DAPC) using adegenet 1.4-0. London: Imperial College London.
    1. Jombart T.,
    2. Devillard S.,
    3. Balloux F.
    . 2010. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics 11(2010):94.
    OpenUrlPubMed
    1. Karlen D.L.,
    2. Stott D.E.
    . 1994. A Framework for Evaluating Physical and Chemical Indicators of Soil Quality. In Defining Soil Quality for a Sustainable Environment, 53-72. Madison, WI: Soil Science Society of America and American Society of Agronomy.
    1. Ladoni M.,
    2. Bahrami H.A.,
    3. Alavipanah S.K.,
    4. Norouzi A.A.
    . 2009. Estimating soil organic carbon from soil reflectance: A review. Precision Agriculture 11(1):82-99.
    OpenUrl
    1. Ludwig B.,
    2. Nitschke R.,
    3. Terhoeven-Urselmans T.,
    4. Michel K.,
    5. Flessa H.
    . 2008. Use of mid-infrared spectroscopy in the diffuse-reflectance mode for the prediction of the composition of organic matter in soil and litter. Journal of Plant Nutrition and Soil Science 171(3):384-391.
    OpenUrl
    1. McCarty G.W.,
    2. Reeves J.B.
    . 2006. Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Science 171(2):94-102.
    OpenUrl
    1. Minasny B.,
    2. McBratney A.B.,
    3. Tranter G.,
    4. Murphy B.W.
    . 2008. Using soil knowledge for the evaluation of mid-infrared diffuse reflectance spectroscopy for predicting soil physical and mechanical properties. European Journal of Soil Science 59(October):960-971.
    OpenUrlGeoRef
    1. Mohanty M.,
    2. Painuli D.K.,
    3. Misra A.K.,
    4. Ghosh P.K.
    . 2007. Soil quality effects of tillage and residue under rice–wheat cropping on a Vertisol in India. Soil and Tillage Research 92(1-2):243-250.
    OpenUrl
    1. O'Neill K.P.,
    2. Amacher M.C.,
    3. Palmer C.J.
    . 2005. Developing a national indicator of soil quality on U.S forestlands: Methods and initial results. Environmental Monitoring and Assessment 107(1-3):59-80.
    OpenUrlPubMed
    1. Oberreuter H.,
    2. Charzinski J.,
    3. Scherer S.
    . 2002. Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiology 148(5):1523-1532.
    OpenUrlCrossRefPubMed
    1. Qi Y.,
    2. Darilek J.L.,
    3. Huang B.,
    4. Zhao Y.,
    5. Sun W.,
    6. Gu Z.
    . 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 149(3-4):325-334.
    OpenUrl
    1. Reeves J.B.
    2010. Near- versus mid-infrared diffuse reflectance spectroscopy for soil analysis emphasizing carbon and laboratory versus on-site analysis: Where are we and what needs to be done? Geoderma 158(1-2):3-14.
    OpenUrlCrossRefGeoRef
    1. Reeves J.B.,
    2. Smith D.B.
    . 2009. The potential of mid- and near-infrared diffuse reflectance spectroscopy for determining major- and trace-element concentrations in soils from a geochemical survey of North America. Applied Geochemistry 24(8):1472-1481.
    OpenUrlGeoRef
    1. Sanderson E.W.,
    2. Malanding J.,
    3. Levy M.A.,
    4. Redford K.H.,
    5. Wannebo A.V.,
    6. Woolmer G.
    . 2002. The human footprint and the last of the wild. BioScience 52(2002):891.
    OpenUrlCrossRefWeb of Science
    1. Schloter M.,
    2. Dilly O.,
    3. Munch J.
    . 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment 98(1-3):255-262.
    OpenUrl
    1. Scullion J.,
    2. Elliott G.,
    3. Huang W.
    . 2003. Use of earthworm casts to validate FT-IR spectroscopy as a “sentinel” technology for high-throughput monitoring of global changes in microbial ecology. Pedobiologia 47(2003):440-446.
    OpenUrlWeb of Science
    1. Soil Survey Staff
    . 2014. Kellog Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Version 5. Washington, DC: USDA Natural Resources Conservation Service.
    1. Soriano-Disla J.M.,
    2. Janik L.J.,
    3. Viscarra Rossel R.A.,
    4. MacDonald L.M.,
    5. McLaughlin M.J.
    . 2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Applied Spectroscopy Reviews 49(March 2015):139-186.
    OpenUrl
    1. Stenberg B.,
    2. Viscarra Rossel R.A.,
    3. Mouazen A.M.,
    4. Wetterlind J.
    . 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107(10):1-44.
    OpenUrl
    1. Viscarra Rossel R.A.,
    2. Walvoort D.J.J.,
    3. McBratney A.B.,
    4. Janik L.J.,
    5. Skjemstad J.O.
    . 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1-2):59-75.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wander M.M.,
    2. Traina S.J.
    . 1996. Organic matter fractions from organically and conventionally managed soils. II. Characterization of Composition 60(1996):1087-1094.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 73 (4)
Journal of Soil and Water Conservation
Vol. 73, Issue 4
July/August 2018
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Applying fingerprint Fourier transformed infrared spectroscopy and chemometrics to assess soil ecosystem disturbance and recovery
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Applying fingerprint Fourier transformed infrared spectroscopy and chemometrics to assess soil ecosystem disturbance and recovery
J.J. Maynard, M.G. Johnson
Journal of Soil and Water Conservation Jul 2018, 73 (4) 443-451; DOI: 10.2489/jswc.73.4.443

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Applying fingerprint Fourier transformed infrared spectroscopy and chemometrics to assess soil ecosystem disturbance and recovery
J.J. Maynard, M.G. Johnson
Journal of Soil and Water Conservation Jul 2018, 73 (4) 443-451; DOI: 10.2489/jswc.73.4.443
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society