Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

A three-pronged approach for identifying source and extent of nitrate contamination in groundwater

Y. Ju, D. Kaown and K.-K. Lee
Journal of Soil and Water Conservation September 2018, 73 (5) 493-503; DOI: https://doi.org/10.2489/jswc.73.5.493
Y. Ju
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Kaown
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.-K. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Alley W.M.
    1. Alley W.M.
    1993. Establishing a conceptual framework. In Regional Ground-Water Quality, ed. Alley W.M., 23-60. New York: Van Nostrand Reinhold.
    1. Aravena R.,
    2. Evans M.L.,
    3. Cherry J.A.
    . 1993. Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water 31:180-186, doi:10.1111/j.1745-6584.1993.tb01809.x.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Aravena R.,
    2. Robertson W.D.
    . 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water 36:975-982, doi:10.1111/j.1745-6584.1998.tb02104.x.
    OpenUrlCrossRefWeb of Science
    1. Arendt C.A.,
    2. Aciego S.M.,
    3. Hetland E.A.
    . 2015. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes. Geochemistry, Geophysics, Geosystems 16:1274-1292, doi:10.1002/2014GC005683.
    OpenUrl
    1. Babiker I.S.,
    2. Mohamed M.A.,
    3. Terao H.,
    4. Kato K.,
    5. Ohta K.
    . 2004. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environmental International 29:1009-1017, doi:10.1016/S0160-4120(03)00095-3.
    OpenUrl
    1. Barringer T.,
    2. Dunn D.,
    3. Battaglin W.,
    4. Vowinkel E.
    . 1990. Problems and methods involved in relating land use to groundwater quality. Water Resources Bulletin 26:1-9, doi:10.1111/j.1752-1688.1990.tb01345.x.
    OpenUrlGeoRef
    1. Böhlke J.K.,
    2. Horan M.
    . 2000. Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Applied Geochemistry 15:599-609, doi:10.1007/s10816-006-9009-x.
    OpenUrlGeoRef
    1. Böttcher J.,
    2. Strebel O.,
    3. Voerkelius S.,
    4. Schmidt H.L.
    . 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology 114:413-424, doi:10.1016/0022-1694(90)90068-9.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Bu X.L.,
    2. Zhao C.X.,
    3. Han F.Y.,
    4. Xue J.H.,
    5. Wu Y.B.
    . 2017. Nitrate reduction in groundwater and isotopic investigation of denitrification in integrated tree-grass riparian buffers in Taihu Lake watershed, eastern China. Journal of Soil and Water Conservation 72(1):45-54, doi:10.2489/jswc.72.1.45.
    OpenUrlAbstract/FREE Full Text
    1. Burkart M.R.,
    2. Kolpin D.W.
    . 1993. Hydrologic and land-use factors associated with herbicides and nitrate in near-surface aquifers. Journal of Environmental Quality 22:646-656, http://dx.doi.org/10.2134/jeq1993.00472425002200040002x.
    OpenUrlGeoRef
    1. Casciotti K.L.,
    2. Sigman D.M.,
    3. Hastings M.G.,
    4. Böhlke J.K.,
    5. Hilkert A.
    . 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Analytical Chemistry 74:4905-4912, doi:10.1021/ac020113w.
    OpenUrlCrossRefPubMed
    1. Christophersen N.,
    2. Hooper R.P.
    . 1992. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resources Research 28:99-107, doi:10.1029/91WR02518.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Cloutier V.,
    2. Lefebvre R.,
    3. Therrien R.,
    4. Savard M.M.
    . 2008. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. Journal of Hydrology 353:294-313, doi:10.1016/j.jhydrol.2008.02.015.
    OpenUrlGeoRef
    1. Deutsch B.,
    2. Mewes M.,
    3. Liskow I.,
    4. Voss M.
    . 2006. Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate. Organic Geochemistry 37:1333-1342, doi:10.1016/j.orggeochem.2006.04.012.
    OpenUrlGeoRef
    1. Eckhardt D.A.,
    2. Stackelberg P.E.
    . 1995. Relation of ground-water quality to land use on Long Island, New York. Ground Water 33:1019-1033, doi:10.1111/j.1745-6584.1995.tb00047.x.
    OpenUrlGeoRef
    1. Exner M.E.,
    2. Spalding R.F.
    . 1994. N-15 identification of nonpoint sources of nitrate contamination beneath cropland in the Nebraska Panhandle: Two case studies. Applied Geochemisty 9:73-81, doi:10.1016/0883-2927(94)90054-X.
    OpenUrl
    1. Flipse W.J.,
    2. Bonner F.T.
    . 1985. Nitrogen-isotope ratios of nitrate in ground water under fertilized fields, Long Island, New York. Ground Water 23:59-67, doi:10.1111/j.1745-6584.1985.tb02780.x.
    OpenUrlCrossRefGeoRef
    1. Frapporti G.,
    2. Vriend S.P.,
    3. Gaans P.V.
    . 1993. Hydrogeochemistry of the shallow Dutch groundwater: Interpretation of the national groundwater quality monitoring network. Water Resources Research 29:2993-3004, doi:10.1029/93WR00970.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Gilbert N.L.,
    2. Goldberg M.S.,
    3. Beckerman B.,
    4. Brook J.R.,
    5. Jerrett M.
    . 2005. Assessing spatial variability of ambient nitrogen dioxide in Montreal, Canada, with a land-use regression model. Journal of Air and Waste Management Association 55:1059-1063, doi:10.1080/10473289.2005.10464708.
    OpenUrl
    1. Gormly J.R.,
    2. Spalding R.F.
    . 1979. Sources and concentrations of nitrate-nitrogen in ground water of the Central Platte Region, Nebraska. Ground Water 17:291-301, doi:10.1111/j.1745-6584.1979.tb03323.x.
    OpenUrlGeoRef
    1. Güler C.,
    2. Thyne G.D.,
    3. McCray J.E.,
    4. Turner K.A.
    . 2002. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeology Journal 10:455-474, doi:10.1007/s10040-002-0196-6.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Helena B.,
    2. Pardo R.,
    3. Vega M.,
    4. Barrado E.,
    5. Fernandez J.M.,
    6. Fernandez L.
    . 2000. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research 34:807-816, doi:10.1016/S0043-1354(99)00225-0.
    OpenUrlCrossRefGeoRef
    1. Helsel D.R.
    1990. Less than obvious-statistical treatment of data below the detection limit. Environmental Science and Technology 24:1766-1774, doi:10.1021/es00082a001.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Hildebrandt A.,
    2. Guillamón M.,
    3. Lacorte S.,
    4. Tauler R.,
    5. Barceló D.
    . 2008. Impact of pesticides used in agriculture and vineyards to surface and groundwater quality (North Spain). Water Research 42:3315-3326, doi:10.1016/j.watres.2008.04.009.
    OpenUrlCrossRefPubMed
    1. Jeannie R.B.B.,
    2. Kroger R.
    . 2014. Nitrogen transport within an agricultural landscape: Insights on how hydrology, biogeochemistry, and the landscape intersect to control the fate and transport of nitrogen in the Mississippi Delta. Journal of Soil and Water Conservation 69(1):11A-15A, doi:10.2489/jswc.69.1.11A.
    OpenUrlFREE Full Text
    1. Jolliffe I.
    2002. Principal Component Analysis. New York: Springer-Verlag New York Inc.
    1. Kaiser H.F.
    1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187-200. https://dx.doi.org/10.1007/BF02289233.
    OpenUrlCrossRefWeb of Science
    1. Kaown D.,
    2. Hyun Y.,
    3. Bae G.O.,
    4. Lee K.K.
    . 2007. Factors affecting the spatial pattern of nitrate contamination in shallow groundwater. Journal of Environmental Quality 36:1479-1487, doi:10.2134/jeq2006.0361.
    OpenUrlCrossRefGeoRefPubMed
    1. Kaown D.,
    2. Koh D.C.,
    3. Mayer B.,
    4. Lee K.K.
    . 2009. Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agriculture Ecosystem and Environment 132:223-231, doi:10.1016/j.agee.2009.04.004.
    OpenUrl
    1. Kaplan N.,
    2. Magaritz M.
    . 1986. A nitrogen-isotope study of the sources of nitrate contamination in groundwater of the Pleistocene coastal plain aquifer, Israel. Water Research 20:131-135, doi:10.1016/0043-1354(86)90002-3.
    OpenUrlGeoRef
    1. Cook P.,
    2. Herczeg A.L.
    1. Kendall C.,
    2. Aravena R.
    . 2000. Nitrate isotopes in groundwater systems. In Environmental Tracers in Subsurface Hydrology, ed. Cook P., Herczeg A.L., 261-297. Boston, MA: Kluwer Academic.
    1. Kim H.,
    2. Kaown D.,
    3. Mayer B.,
    4. Lee J.Y.,
    5. Hyun Y.,
    6. Lee K.K.
    . 2015a. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Science of the Total Environment 533:566-575, doi:10.1016/j.scitotenv.2015.06.080.
    OpenUrl
    1. Kim K.H.,
    2. Yun S.T.,
    3. Mayer B.,
    4. Lee J.H.,
    5. Kim T.S.,
    6. Kim H.K.
    . 2015b. Quantification of nitrate sources in groundwater using hydrochemical and dual isotopic data combined with a Bayesian mixing model. Agriculture Ecosystem and Environment 199:369-381. https://doi.org/10.1016/j.agee.2014.10.014.
    OpenUrl
    1. Koh D.C.,
    2. Chang H.W.,
    3. Lee K.S.,
    4. Ko K.S.,
    5. Kim Y.,
    6. Park W.B.
    . 2005. Hydrogeochemistry and environmental isotopes of ground water in Jeju volcanic island, Korea: Implications for nitrate contamination. Hydrological Processes 19:2225-2245, doi:10.1002/hyp.5672.
    OpenUrlGeoRef
    1. Koh E.H.,
    2. Kaown D.,
    3. Mayer B.,
    4. Kang B.R.,
    5. Moon H.S.,
    6. Lee K.K.
    . 2012. Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju Island, Korea. Journal of Environmental Quality 41:1835-1845, doi:10.2134/jeq2011.0417.
    OpenUrlPubMed
    1. Koh D.C.,
    2. Mayer B.,
    3. Lee K.S.,
    4. Ko K.S.
    . 2010. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Journal of Contaminant Hydrology 118:62-78, doi:10.1016/j.jconhyd.2010.08.003.
    OpenUrlPubMed
    1. Korea Meteorological Administration
    . 2017. Korea Meteorological Administration. www.kma.go.kr.
    1. Korea Ministry of Environment
    . 2017. Environmental Geographic Information Service. http://egis.me.go.kr.
    1. Kreitler C.W.
    1979. Nitrogen-isotope ratio studies of soils and groundwater nitrate from alluvial fan aquifers in Texas. Journal of Hydrology 42:147-170, doi:10.1016/0022-1694(79)90011-8.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Kreitler C.W.,
    2. Jones D.C.
    . 1975. Natural soil nitrate: The cause of the nitrate contamination of ground water in Runnels County, Texas. Ground Water 13:53-62, doi:10.1111/j.1745-6584.1975.tb03065.x.
    OpenUrlCrossRefGeoRef
    1. K-water and MOLIT
    . 2009. The groundwater baseline survey in Eumseong-gun. Korea Water Resources Corporation and Ministry of Land, Infrastructure and Transport, Government of Republic of Korea (in Korean).
    1. Ledesma-Ruiz R.,
    2. Pastén-Zapata E.,
    3. Parra R.,
    4. Harter T.,
    5. Mahlknecht J.
    . 2015. Investigation of the geochemical evolution of groundwater under agricultural land: A case study in northeastern Mexico. Journal of Hydrology 521:410-423, doi:10.1016/j.jhydrol.2014.12.026.
    OpenUrlGeoRef
    1. Lee K.S.,
    2. Wenner D.B.,
    3. Lee I.
    . 1999. Using H-and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: Example from Cheju Island, Korea. Journal of Hydrology 222:65-74, doi:10.1016/S0022-1694(99)00099-2.
    OpenUrlGeoRef
    1. Matiatos I.
    2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (central Greece). Science of the Total Environment 541:802-814. https://doi.org/10.1016/j.scitotenv.2015.09.134.
    OpenUrl
    1. Mayer B.,
    2. Boyer E.W.,
    3. Goodale C.,
    4. Jaworski N.A.,
    5. Van Breemen N.,
    6. Howarth R.W.,
    7. Seitzinger S.,
    8. Billen G.,
    9. Lajtha K.,
    10. Nadelhoffer K.,
    11. Van Dam D.,
    12. Hetling L.J.,
    13. Nosal M.,
    14. Paustian K.
    . 2002. Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry 57/58:171-197, doi:10.1023/A:1015744002496.
    OpenUrl
    1. Nolan B.T.
    2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Ground Water 39:290-299, doi:10.1111/j.1745-6584.2001.tb02311.x.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Panda U.C.,
    2. Sundaray S.K.,
    3. Rath P.,
    4. Nayak B.B.,
    5. Bhatta D.
    . 2006. Application of factor and cluster analysis for characterization of river and estuarine water systems–A case study: Mahanadi River (India). Journal of Hydrology 331:434-445, doi:10.1016/j.jhydrol.2006.05.029.
    OpenUrlCrossRef
    1. Puckett L.J.,
    2. Cowdery T.K.
    . 2002. Transport and fate of nitrate in a glacial outwash aquifer in relation to ground water age, land use practices, and redox processes. Journal of Environmental Quality 31:782-796, doi:10.2134/jeq2002.7820.
    OpenUrlCrossRefGeoRefPubMedWeb of Science
    1. Sanford R.F.,
    2. Pierson C.T.,
    3. Crovelli R.A.
    . 1993. An objective replacement method for censored geochemical data. Mathematical Geology 25:59-80, doi:10.1007/BF00890676.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Schilling K.E.,
    2. Jones C.S.,
    3. Wolter C.F.,
    4. Liang X.,
    5. Zhang Y.-K.,
    6. Seeman A.,
    7. Isenhart T.,
    8. Schnoebelen D.,
    9. Skopec M.
    . 2017. Variability of nitrate-nitrogen load estimation results will make quantifying load reduction strategies difficult in Iowa. Journal of Soil and Water Conservation 72(4):317-325, doi:10.2489/jswc.72.4.317.
    OpenUrlAbstract/FREE Full Text
    1. Schot P.P.,
    2. Van der Wal J.
    . 1992. Human impact on regional groundwater composition through intervention in natural flow patterns and changes in land use. Journal of Hydrology 134:297-313, doi:10.1016/0022-1694(92)90040-3.
    OpenUrlCrossRefGeoRef
    1. Secunda S.,
    2. Collin M.L.,
    3. Melloul A.J.
    . 1998. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of Environmental Management 54(1):39-57, https://doi.org/10.1006/jema.1998.0221.
    OpenUrlCrossRefGeoRef
    1. Senthilkumar G.,
    2. Ramanathan A.L.,
    3. Nainwal H.C.,
    4. Chidambaram S.
    . 2008. Evaluation of the hydro geochemistry of groundwater using factor analysis in the Cuddalore coastal region, Tamil Nadu, India. Indian Journal of Marine Sciences 37:181, doi:14.139.47.15/handle/123456789/1882.
    OpenUrlGeoRef
    1. Steiner C.,
    2. Teixeira W.G.,
    3. Lehmann J.,
    4. Nehls T.,
    5. de Macêdo J.L.V.,
    6. Blum W.E.,
    7. Zech W.
    . 2007. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil 291:275-290, doi:10.1007/s11104-007-9193-9.
    OpenUrlCrossRefWeb of Science
    1. Steinhorst R.K.,
    2. Williams R.E.
    . 1985. Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resources Research 21:1149-1156, doi:10.1029/WR021i008p01149.
    OpenUrlCrossRefGeoRef
    1. US DOE (US Department of Energy)
    . 2012. Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils Wash, Shiprock, New Mexico (No. LMS/SHP/S09257). Washington, DC: US Department of Energy/Office of Legacy Management.
    1. Usunoff E.J.,
    2. Guzmán-Guzmán A.
    . 1989. Multivariate analysis in hydrochemistry: An example of the use of factor and correspondence analyses. Ground Water 27:27-34, doi:10.1111/j.1745-6584.1989.tb00004.x.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Wassenaar L.I.
    1995. Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO3−. Applied Geochemistry 10:391-405, doi:10.1016/0883-2927(95)00013-A.
    OpenUrlGeoRef
    1. Wells E.R.,
    2. Krothe N.C.
    . 1989. Seasonal fluctuation in δ15N of groundwater nitrate in a mantled karst aquifer due to macropore transport of fertilizer-derived nitrate. Journal of Hydrology 112:191-201, doi:10.1016/0022-1694(89)90188-1.
    OpenUrlGeoRef
    1. Xue D.,
    2. Botte J.,
    3. De Baets B.,
    4. Accoe F.,
    5. Nestler A.,
    6. Taylor P.,
    7. Van Cleemput O.,
    8. Berglund M.,
    9. Boeckx P.
    . 2009. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research 43:1159-1170, doi:10.1016/j.watres.2008.12.048.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 73 (5)
Journal of Soil and Water Conservation
Vol. 73, Issue 5
September/October 2018
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A three-pronged approach for identifying source and extent of nitrate contamination in groundwater
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A three-pronged approach for identifying source and extent of nitrate contamination in groundwater
Y. Ju, D. Kaown, K.-K. Lee
Journal of Soil and Water Conservation Sep 2018, 73 (5) 493-503; DOI: 10.2489/jswc.73.5.493

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A three-pronged approach for identifying source and extent of nitrate contamination in groundwater
Y. Ju, D. Kaown, K.-K. Lee
Journal of Soil and Water Conservation Sep 2018, 73 (5) 493-503; DOI: 10.2489/jswc.73.5.493
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Benefits, barriers, and use of cover crops in the western United States: Regional survey results
  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society