Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability

M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser and C.M. Pittelkow
Journal of Soil and Water Conservation July 2019, 74 (4) 350-359; DOI: https://doi.org/10.2489/jswc.74.4.350
M. Yuan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Burjel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Isermann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.J. Goeser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.M. Pittelkow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Cover crops have the potential to reduce nitrate (NO3) losses while improving soil quality, yet achieving uniform cover crop establishment can be challenging in the US Midwest. Understanding the variability of cover crop biomass and nitrogen (N) uptake at the field-scale is an important step in determining potential effects on the following cash crop and benefits to water quality, but efficient and nondestructive methods are lacking. The objective of this study was to evaluate a lightweight unmanned aerial vehicle (UAV) mounted with a multispectral sensor in estimating cover crop (grass species) biomass and N uptake prior to cover crop termination at four commercial fields in Illinois during the 2017 growing season. Two fields had triticale (× Triticosecale Wittmack) before corn (Zea mays L.) and two had cereal rye (Secale cereale L.) before soybean (Glycine max [L.] Merr.). Forty ground-truth biomass samples (1 m2) were collected on the day of each UAV flight across each field. Linear relationships were established between cover crop biomass and N uptake and four vegetation indices (VIs; Normalized Difference Vegetation Index [NDVI], Green Ratio Vegetation Index [GRVI], Green Normalized Difference Vegetation Index [GNDVI], and Triangular Vegetation Index [TVI]). The four VIs performed similarly in estimating cover crop biomass and N uptake (R2 range, 0.42 to 0.93; RMSE range, 9.4% to 27.2% of the range of biomass or N uptake). A high degree of within-field variability for NDVI was observed at all fields, with biomass and N uptake at soybean fields ranging from 0 to 1,790 kg ha−1 and 0 to 48.5 kg ha−1, respectively, and at corn fields 0 to 840 kg ha−1 and 0 to 31.5 kg ha−1, respectively. Because cover crop biomass is often estimated based on hand samples, we also simulated the effects of biomass sampling number (2, 5, 10, or 15) on the probability of reaching different accuracy levels for estimating field means for different field sizes. Under the growing conditions of this single study year and relatively modest biomass accumulation (<1,400 kg ha−1), results from this preliminary study provide evidence that UAVs are a viable technique to obtain relatively rapid, nondestructive estimates of biomass and N uptake of two grass cover crops at vegetative stage prior to termination at the field-scale in the US Midwest. This approach could help effectively utilize scarce conservation resources, but further work is needed to evaluate other cover crop species under a wider range of growth conditions.

  • © 2019 by the Soil and Water Conservation Society
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (4)
Journal of Soil and Water Conservation
Vol. 74, Issue 4
July/August 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser, C.M. Pittelkow
Journal of Soil and Water Conservation Jul 2019, 74 (4) 350-359; DOI: 10.2489/jswc.74.4.350

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser, C.M. Pittelkow
Journal of Soil and Water Conservation Jul 2019, 74 (4) 350-359; DOI: 10.2489/jswc.74.4.350
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing Soil Vulnerability Index classification with respect to rainfall characteristics
  • Trade-off analysis of water conservation and water consumption of typical ecosystems at different climatic scales in the Dongjiang River basin, China
  • Long-term subsoiling and straw return increase soil organic carbon fractions and crop yield
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society