Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability

M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser and C.M. Pittelkow
Journal of Soil and Water Conservation July 2019, 74 (4) 350-359; DOI: https://doi.org/10.2489/jswc.74.4.350
M. Yuan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.C. Burjel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Isermann
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N.J. Goeser
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.M. Pittelkow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Broge N.H.,
    2. Leblanc E.
    . 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment 76(2):156–172.
    OpenUrlCrossRef
    1. Cheng T.,
    2. Rivard B.,
    3. Sánchez-Azofeifa A.G.,
    4. Féret J.-B.,
    5. Jacquemoud S.,
    6. Ustin S.L.
    . 2014. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing 87(2014):28–38.
    OpenUrl
    1. Crandall S.M.,
    2. Ruffo M.L.,
    3. Bollero G.A.
    . 2005. Cropping system and nitrogen dynamics under a cereal winter cover crop preceding corn. Plant and Soil 268(1):209–219.
    OpenUrlCrossRef
    1. Dabney S.M.,
    2. Delgado J.A.,
    3. Reeves D.W.
    . 2001. Using winter cover crops to improve soil and water quality. Communications in Soil Science and Plant Analysis 32(7–8):1221–1250.
    OpenUrlCrossRefWeb of Science
    1. ESRI (Environmental Systems Research Institute)
    . 2013. ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research Institute.
    1. Finney D.M.,
    2. White C.M.,
    3. Kaye J.P.
    . 2016. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agronomy Journal 108(1):39–52.
    OpenUrl
    1. Gasparotto A.,
    2. de C.,
    3. Nanni M.R.,
    4. da Silva Junior C.A.,
    5. Cesar E.,
    6. Romagnoli F.,
    7. da Silva A.A.,
    8. Guirado G.C.
    . 2015. Using GNIR and RNIR extracted by digital images to detect different levels of nitrogen in corn. Journal of Agronomy 14(2):62–71.
    OpenUrl
    1. Gitelson A.A.,
    2. Kaufman Y.J.,
    3. Merzlyak M.N.
    . 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58(3):289–298.
    OpenUrl
    1. Gómez-Candón D.,
    2. De Castro A.I.,
    3. López-Granados F.
    . 2014. Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precision Agriculture 15(1):44–56.
    OpenUrl
    1. Hively W.D.,
    2. Lang M.,
    3. McCarty G.W.,
    4. Keppler J.,
    5. Sadeghi A.,
    6. McConnell L.L.
    . 2009. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. Journal of Soil and Water Conservation 64(5):303–313, doi:10.2489/jswc.64.5.303.
    OpenUrlAbstract/FREE Full Text
    1. Hunt E.R.,
    2. Hively W.D.,
    3. Mccarty G.W.,
    4. Daughtry C.S.T.,
    5. Forrestal P.J.,
    6. Kratochvil R.J.,
    7. Carr J.L.,
    8. Allen N.F.,
    9. Fox-rabinovitz J.R.,
    10. Miller C.D.
    . 2011. NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GIScience and Remote Sensing 48(1):86–98.
    OpenUrlCrossRef
    1. Illinois EPA (Environmental Protection Agency)
    . 2015. Illinois Nutrient Loss Reduction Strategy (INLRS). Springfield, IL: Illinois Environmental Protection Agency. https://www2.illinois.gov/epa/Documents/iepa/water-quality/watershed-management/nlrs/nlrs-final-revised-083115.pdf.
    1. Jahanzad E.,
    2. Barker A.V.,
    3. Hashemi M.,
    4. Sadeghpour A.,
    5. Eaton T.
    . 2017. Forage radish and winter pea cover crops outperformed rye in a potato cropping system. Agronomy Journal 109(2):646–653.
    OpenUrl
    1. Jensen T.,
    2. Apan A.,
    3. Young F.,
    4. Zeller L.
    . 2007. Detecting the attributes of a wheat crop using digital imagery acquired from a low-altitude platform. Computers and Electronics in Agriculture 59(2007):66–77.
    OpenUrl
    1. Kaspar T.C.,
    2. Bakker M.G.
    . 2015. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield. Journal of Soil and Water Conservation 70(6):353–364, doi:10.2489/jswc.70.6.353.
    OpenUrlAbstract/FREE Full Text
    1. Li F.,
    2. Miao Y.,
    3. Feng G.,
    4. Yuan F.,
    5. Yue S.,
    6. Gao X.,
    7. Liu Y.,
    8. Liu B.,
    9. Ustin S.L.,
    10. Chen X.
    . 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research 157(2014):111–123.
    OpenUrl
    1. Li W.,
    2. Niu Z.,
    3. Chen H.,
    4. Li D.,
    5. Wu M.,
    6. Zhao W.
    . 2016. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecological Indicators 67(2016):637–648.
    OpenUrl
    1. Liebisch F.,
    2. Kirchgessner N.,
    3. Schneider D.,
    4. Walter A.,
    5. Hund A.
    . 2015. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11(9).
    1. Magney T.S.,
    2. Eitel J.U.H.,
    3. Vierling L.A.
    . 2016. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precision Agriculture (2016):1–23.
    1. Maresma Á.,
    2. Ariza M.,
    3. Martínez E.,
    4. Lloveras J.,
    5. Martínez-Casasnovas J.
    . 2016. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a standard UAV service. Remote Sensing 8(12):973.
    OpenUrl
    1. Martinez-Feria R.A.,
    2. Dietzel R.,
    3. Liebman M.,
    4. Helmers M.J.,
    5. Archontoulis S.V.
    . 2016. Rye cover crop effects on maize: A system-level analysis. Field Crops Research 196(2016):145–159.
    OpenUrl
    1. Miguez F.E.,
    2. Bollero G.A.
    . 2006. Winter cover crops in Illinois: Evaluation of ecophysiological characteristics of corn. Crop Science 46(4):1536–1545.
    OpenUrlCrossRefWeb of Science
    1. Muñoz J.D.,
    2. Finley A.O.,
    3. Gehl R.,
    4. Kravchenko Sasha S.
    . 2010. Nonlinear hierarchical models for predicting cover crop biomass using Normalized Difference Vegetation Index. Remote Sensing of Environment 114(12):2833–2840.
    OpenUrl
    1. Muñoz J.D.,
    2. Steibel J.P.,
    3. Snapp S.,
    4. Kravchenko A.N.
    . 2014. Cover crop effect on corn growth and yield as influenced by topography. Agriculture, Ecosystems and Environment 189(2014):229–239.
    OpenUrlCrossRef
    1. Naveed M.,
    2. Et T.
    . 2013. Hyperspectral estimation model for nitrogen contents of summer corn leaves under rainred conditions. Pakistan Journal of Botany 45(5):1623–1630.
    OpenUrl
    1. Nguyen H.T.,
    2. Kim J.H.,
    3. Nguyen A.T.,
    4. Nguyen L.T.,
    5. Shin J.C.,
    6. Lee B.-W.
    . 2006. Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precision Agriculture 7(4):249–264.
    OpenUrl
    1. Pajares G.
    2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing 81(April):281–330.
    OpenUrl
    1. Pantoja J.L.,
    2. Woli K.P.,
    3. Sawyer J.E.,
    4. Barker D.W.
    . 2015. Corn nitrogen fertilization requirement and corn-soybean productivity with a rye cover crop. Soil Science Society of America Journal 79(5):1482–1495.
    OpenUrl
    1. Pantoja J.L.,
    2. Woli K.P.,
    3. Sawyer J.E.,
    4. Barker D.W.
    . 2016. Winter rye cover crop biomass production, degradation, and nitrogen recycling. Agronomy Journal 108(2):841–853.
    OpenUrl
    1. Pena J.M.,
    2. Torres-Sannchez J.,
    3. de Castro A.I.,
    4. Kelly M.,
    5. Lopez-Granados F.
    . 2013. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 8(10):1–11.
    OpenUrlCrossRefPubMed
    1. Prabhakara K.,
    2. Hively W.D.,
    3. McCarty G.W.
    . 2015. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation 39(2015):88–102.
    OpenUrlCrossRef
    1. R Core Team
    . 2015. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org.
    1. Restovich S.B.,
    2. Andriulo A.E.,
    3. Portela S.I.
    . 2012. Introduction of cover crops in a maize-soybean rotation of the Humid Pampas: Effect on nitrogen and water dynamics. Field Crops Research 128(2012):62–70.
    OpenUrl
    1. Roesch-McNally G.E.,
    2. Basche A.D.,
    3. Arbuckle J.G.,
    4. Tyndall J.C.,
    5. Miguez F.E.,
    6. Bowman T.,
    7. Clay R.
    . 2017. The trouble with cover crops: Farmers' experiences with overcoming barriers to adoption. Renewable Agriculture and Food Systems (2017):1–12.
    1. Roth L.,
    2. Streit B.
    . 2017. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: An applied photogrammetric approach. Precision Agriculture 19(1):1–22.
    OpenUrl
    1. Rouse J.W.,
    2. Haas R.H.,
    3. Deering D.W.
    . 1974. Monitoring vegetation systems in the Great Plains with ERTS. In ERTS 3rd Symposium, NASA SP-351, Vol. 1, 309–317. Goddard Space Flight Centre, Greenbelt, Maryland.
    OpenUrl
    1. Rydberg A.,
    2. Söderström M.,
    3. Hagner O.,
    4. Börjesson T.
    . 2007. Field specific overview of crops using UAV. 6th European Conference in Precision Agriculture January:357–364.
    1. Sivaganesan S.,
    2. Chandrasekaran M.
    . 2016. Impact of various compression ratio on the compression ignition engine with diesel and mahua biodiesel. International Journal of ChemTech Research 9(11):63–70.
    OpenUrl
    1. Sripada R.P.,
    2. Heiniger R.W.,
    3. White J.G.,
    4. Meijer A.D.
    . 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal 98(4):968–977.
    OpenUrlCrossRefWeb of Science
    1. Tilly N.,
    2. Aasen H.,
    3. Bareth G.
    . 2015. Fusion of plant height and vegetation indices for the estimation of barley biomass. Remote Sensing 7(2015):11449–11480.
    OpenUrl
    1. Torres-Sánchez J.,
    2. Peña J.M.,
    3. de Castro A.I.,
    4. López-Granados F.
    . 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture 103(2014):104–113.
    OpenUrl
    1. Xu X.,
    2. Zhao C.,
    3. Wang J.,
    4. Zhang J.,
    5. Song X.
    . 2014. Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley. Precision Agriculture 15(2):227–240.
    OpenUrl
    1. Yu K.,
    2. Li F.,
    3. Gnyp M.L.,
    4. Miao Y.,
    5. Bareth G.,
    6. Chen X.
    . 2013. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS Journal of Photogrammetry and Remote Sensing 78(2013):102–115.
    OpenUrl
    1. Yu N.,
    2. Li L.,
    3. Schmitz N.,
    4. Tian L.F.,
    5. Greenberg J.A.,
    6. Diers B.W.
    . 2016. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sensing of Environment 187(2016):91–101.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (4)
Journal of Soil and Water Conservation
Vol. 74, Issue 4
July/August 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
14 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser, C.M. Pittelkow
Journal of Soil and Water Conservation Jul 2019, 74 (4) 350-359; DOI: 10.2489/jswc.74.4.350

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Unmanned aerial vehicle–based assessment of cover crop biomass and nitrogen uptake variability
M. Yuan, J.C. Burjel, J. Isermann, N.J. Goeser, C.M. Pittelkow
Journal of Soil and Water Conservation Jul 2019, 74 (4) 350-359; DOI: 10.2489/jswc.74.4.350
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Characteristics of the soil macropore and root architecture of alpine meadows during the seasonal freezing-thawing process and their impact on water transport in the Qinghai Lake watershed, northeastern Qinghai–Tibet Plateau
  • Long-term drainage water recycling affects soil health and soil properties
  • Effects of different vegetation restoration types on soil infiltration characteristics in severely eroded subtropical regions of South China
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society