Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Understanding the effects of grazing and prescribed fire on hydrology of Kentucky bluegrass–dominated rangelands in the northern Great Plains

S.K. Nouwakpo, D. Toledo, M. Sanderson and M. Weltz
Journal of Soil and Water Conservation July 2019, 74 (4) 360-371; DOI: https://doi.org/10.2489/jswc.74.4.360
S.K. Nouwakpo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Toledo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Sanderson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Weltz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

According to National Resources Inventory data, Kentucky bluegrass (Poa pratensis L.) is now present in over 85% of the areas sampled. This invasive, perennial, cool season grass can serve to stabilize soils and increase site stability; however, it also alters nutrient flows, soil structure, and plant community composition, ultimately degrading biotic integrity. In addition, Kentucky bluegrass alters the hydrologic function of an area by changing root structure and the way in which water flow is captured and released back into the ecosystem. To clarify the effect of Kentucky bluegrass on hydrological characteristics of invaded sites, rainfall simulation experiments and hydrophobicity measurements with water drop infiltration time and molarity of ethanol droplet tests were conducted at three locations all within the same ecological site in the northern Great Plains. Rainfall simulation experiments were performed on 24 large plots (6 × 2 m) at 63.5 mm h−1 and 127 mm h−1 intensities and on 16 small plots (0.7 × 0.7 m) at 63.5 mm h−1 and 103 mm h−1. Rainfall was maintained on the large plots until 10 minutes of steady-state runoff was measured or for a maximum of 30 minutes in the absence of runoff, while on the small plots, rainfall duration was set at 25 minutes. The soil layer was divided into four strata (litter, thatch, root mat, and mineral soil), which were physically separated for their hydrophobic behavior in laboratory and field water drop penetration tests and molarity analyses. Our results indicate that on dry soil strata, water drop penetration time increased by 20 seconds on litter and 3 seconds on thatch for every percentage point increase in Kentucky bluegrass in the vegetation, confirming the close association between this grass species and the development of soil hydrophobicity. Rainfall simulation on dry soils (less than 20% volumetric water content) also revealed that the time needed to initiate runoff was shortened by 5 minutes, and the runoff ratio increased by 0.004 for every percentage point increase of Kentucky bluegrass in the vegetation cover. Hydrophobicity dramatically declined in the thatch layer by a factor of 4 and was completely absent from the litter layer after wetting. In contrast to the rainfall simulations on dry soils, wet runs (volumetric water content ≥20%) showed a beneficial effect of Kentucky bluegrass on hydrologic response with delayed runoff by 5 minutes and reduced runoff ratios by 0.003 for 1% increase in Kentucky bluegrass in the vegetation cover. Prescribed fire increased litter hydrophobicity, but this did not adversely affect hydrologic response. This study highlights the need for further research contrasting detrimental effects of Kentucky bluegrass on hydrologic response in dry soil conditions with the beneficial effect of this grass on infiltration under wet conditions to better predict the overall ecohydrological outcome of an invasion by this grass species.

  • © 2019 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (4)
Journal of Soil and Water Conservation
Vol. 74, Issue 4
July/August 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Understanding the effects of grazing and prescribed fire on hydrology of Kentucky bluegrass–dominated rangelands in the northern Great Plains
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Understanding the effects of grazing and prescribed fire on hydrology of Kentucky bluegrass–dominated rangelands in the northern Great Plains
S.K. Nouwakpo, D. Toledo, M. Sanderson, M. Weltz
Journal of Soil and Water Conservation Jul 2019, 74 (4) 360-371; DOI: 10.2489/jswc.74.4.360

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Understanding the effects of grazing and prescribed fire on hydrology of Kentucky bluegrass–dominated rangelands in the northern Great Plains
S.K. Nouwakpo, D. Toledo, M. Sanderson, M. Weltz
Journal of Soil and Water Conservation Jul 2019, 74 (4) 360-371; DOI: 10.2489/jswc.74.4.360
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Why do farmers care about rented land? Investigating the context of farmland tenure
  • Duration of usage and farmer reported benefits of conservation tillage
  • Sources of sediments during rainfall in the dry-hot valley region of China on a small watershed scale
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2021 Soil and Water Conservation Society