Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Sugarcane straw removal effects on soil water storage and drainage in southeastern Brazil

M.R. Gmach, F.V. Scarpare, M.R. Cherubin, I.P. Lisboa, A.K. Belarmino dos Santos, C.E. Pellegrino Cerri and C.C. Cerri
Journal of Soil and Water Conservation September 2019, 74 (5) 466-476; DOI: https://doi.org/10.2489/jswc.74.5.466
M.R. Gmach
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.V. Scarpare
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.R. Cherubin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I.P. Lisboa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.K. Belarmino dos Santos
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.E. Pellegrino Cerri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.C. Cerri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Allen R.G.,
    2. Pereira L.S.,
    3. Raes D.,
    4. Smith M.
    . 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56. Rome: The Food and Agriculture Organization.
    1. Awe G.O.,
    2. Reichert J.M.,
    3. Wendroth O.O.
    . 2015. Temporal variability and covariance structures of soil temperature in a sugarcane field under different management practices in southern Brazil. Soil and Tillage Research 150:93-106, https://doi.org/10.1016/j.still.2015.01.013.
    OpenUrl
    1. Baquero J.E.,
    2. Ralisch R.,
    3. Medina C.C.,
    4. Tavares-Filho J.,
    5. Guimarães M.F.
    . 2012. Soil physical properties and sugarcane root growth in a red oxisol. Revista Brasileira de Ciência do Solo 36:63-70, https://doi.org/10.1590/S0100-06832012000100007.
    OpenUrl
    1. Baracat-Neto J.,
    2. Scarpare F.V.,
    3. Araújo R.B.,
    4. Scarparefilho J.A.
    . 2017. Initial development and yield in sugarcane from different propagules. Pesquisa Agropecuária Tropical 47:273-278.
    OpenUrl
    1. Bastidas-Obando E.,
    2. Bastiaanssen W.G.M.,
    3. Jarmain C.
    . 2017. Estimation of transpiration fluxes from rainfed and irrigated sugarcane in South Africa using a canopy resistance and crop coefficient model. Agricultural Water Management 181:94-107, https://doi.org/10.1016/J.AGWAT.2016.11.024.
    OpenUrl
    1. Batista M.A.,
    2. Paiva D.W.,
    3. Marcolino A.
    . 2014. Solos para Todos: Perguntas e Respostas, 77. Rio de Janeiro, Brazil: Embrapa Solos.
    1. Benyamini Y.,
    2. Unger P.W.
    . 1984. Crust development under simulated rainfall on four soils. In Agronomy Abstracts, 243. Madison, WI: American Society of Agronomy.
    1. Blanco-Canqui H.,
    2. Lal R.
    . 2009. Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences 28:139-163, https://doi.org/10.1080/07352680902776507.
    OpenUrlCrossRef
    1. Braida J.A.,
    2. Reichert J.M.,
    3. Da Veiga M.,
    4. Reinert D.J.
    . 2006. Resíduos vegetais na superfície e carbono orgânico do solo e suas relações com a densidade máxima obtida no ensaio proctor. Revista Brasileira de Ciência do Solo 30:605-614, https://doi.org/10.1590/S0100-06832006000400001.
    OpenUrl
    1. Carvalho J.L.N.,
    2. Nogueirol R.C.,
    3. Menandro L.M.S.,
    4. Bordonal R.O.,
    5. Borges C.D.,
    6. Cantarella H.,
    7. Franco H.C.J.
    . 2017. Agronomic and environmental implications of sugarcane straw removal: A major review. Global Change Biology Bioenergy 9:1181-1195, https://doi.org/10.1111/gcbb.12410.
    OpenUrl
    1. Castioni G.A.,
    2. Cherubin M.R.,
    3. Menandro L.M.S.,
    4. Sanches G.M.,
    5. Bordonal R.O.,
    6. Barbosa L.C.,
    7. Franco H.C.J.,
    8. Carvalho J.L.N.
    . 2018. Soil physical quality response to sugarcane straw removal in Brazil: A multi-approach assessment. Soil and Tillage Research 184:301-309, https://doi.org/10.1016/j.still.2018.08.007.
    OpenUrl
    1. Castro A.M.C.,
    2. Santos K.H.,
    3. Miglioranza É.,
    4. Gomes C.J.A.,
    5. Marchione M.S.
    . 2013. Avaliação de atributos físicos do solo em diferentes anos de cultivo de cana-de-açúcar Evaluation. Revista Agrárias 6:415-422.
    OpenUrl
    1. Cerri C.C.,
    2. Galdos M.V.,
    3. Maia S.M.F.,
    4. Bernoux M.,
    5. Feigl B.J.,
    6. Powlson D.,
    7. Cerri C.E.P.
    . 2011. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: An examination of existing data. European Journal of Soil Sciece 62:23-28, https://doi.org/10.1111/j.1365-2389.2010.01315.x.
    OpenUrl
    1. Cherubin M.R.,
    2. Karlen D.L.,
    3. Cerri C.E.P.,
    4. Franco A.L.C.,
    5. Tormena C.A.,
    6. Davies C.A.,
    7. Cerri C.C.
    . 2016a. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS One 11:1-26, https://doi.org/10.1371/journal.pone.0150860.
    OpenUrlCrossRefPubMed
    1. Cherubin M.R.,
    2. Karlen D.L.,
    3. Franco A.L.C.,
    4. Tormena C.A.,
    5. Cerri C.E.P.,
    6. Davies C.A.,
    7. Cerri C.C.
    . 2016b. Soil physical quality response to sugarcane expansion in Brazil. Geoderma 267:156-168, https://doi.org/10.1016/j.geoderma.2016.01.004.
    OpenUrl
    1. Cherubin M.R.,
    2. Oliveira D.M.S.,
    3. Feigl B.J.,
    4. Pimentel L.G.,
    5. Lisboa I.P.,
    6. Gmach M.R.,
    7. Varanda L.L.,
    8. Moraes M.C.,
    9. Satiro L.S.,
    10. Popin G.V.,
    11. Paiva S.R.,
    12. Santos A.K.B.,
    13. Vasconcelos A.L.S.,
    14. Melo P.L.A.,
    15. Cerri C.E.P.,
    16. Cerri C.C.
    . 2018. Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola 75:255-272, https://doi.org/10.1590/1678-992X-2016-0459.
    OpenUrl
    1. Cock J.H.
    2003. Sugarcane growth and development. International Sugar Journal 105:540-552.
    OpenUrl
    1. CONAB (Companhia Nacional de Abastecimento)
    . 2017. Séries históricas: Cana-de-açúcar Agrícola. http://www.conab.gov.br/conteudos.php?a=1252&Pagina_objcmsconteudos=2#A_objcmsconteudos.
    1. Dalla Rosa J.,
    2. Cooper M.,
    3. Darboux F.,
    4. Medeiros J.C.
    . 2012. Soil roughness evolution in different tillage systems under simulated rainfall using a semivariogram-based index. Soil Tillage and Research 124:226-232.
    OpenUrl
    1. Demattê J.L.I.,
    2. Demattê J.A.M.
    . 2009. Ambientes de produção como estratégia de manejo na cultura da cana-de-açúcar. Informações Agronômicas 127:10-18.
    OpenUrl
    1. Denmead O.T.,
    2. Mayocchi C.L.,
    3. Dunin F.X.
    . 1997. Does green cane harvesting conserve soil water? Proceedings of Australian Society of Sugar Cane Technology 19:139-146.
    OpenUrl
    1. dos Anjos J.C.R.,
    2. de Andrade A.S.,
    3. Bastos E.A.,
    4. Noleto D.H.,
    5. Brito Melo F.,
    6. Brito R.R.
    . 2017. Water storage in a Plinthaqualf cultivated with sugarcane under straw levels. Pesquisa Agropecuária Brasileira 52:464-473, https://doi.org/10.1590/S0100-204X2017000600010.
    OpenUrl
    1. Dourado-Neto D.,
    2. Timm L.C.,
    3. Cesar J.,
    4. de Oliveira M.,
    5. Oliveira O.,
    6. Bacchi S.,
    7. Tominaga T.T.,
    8. Meira F.A.
    . 1999. State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Scientia Agricola 56:1215-1221.
    OpenUrl
    1. ESALQ-USP (Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo)
    . 2018. Base de dados da estação convencional. Departamento de Engenharia de Biossistemas. http://www.esalq.usp.br/departamentos/leb/postocon.html.
    1. Fernández-Raga M.,
    2. Palencia C.,
    3. Keesstra S.,
    4. Jordán A.,
    5. Fraile R.,
    6. Angulo-Martínez M.,
    7. Cerdà A.
    . 2017. Splash erosion: A review with unanswered questions. Earth-Science Reviews 171:463-477, https://doi.org/10.1016/J.EARSCIREV.2017.06.009.
    OpenUrl
    1. Ferreira T.H.S.,
    2. Tsunada M.S.,
    3. Bassi D.,
    4. Araújo P.,
    5. Mattiello L.,
    6. Guidelli G.V.,
    7. Righetto G.L.,
    8. Gonçalves V.R.,
    9. Lakshmanan P.,
    10. Menossi M.
    . 2017. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Frontiers in Plant Science 8:1-18, https://doi.org/10.3389/fpls.2017.01077.
    OpenUrl
    1. Franco A.L.C.,
    2. Cherubin M.R.,
    3. Pavinato P.S.,
    4. Cerri C.E.P.,
    5. Six J.,
    6. Davies C.A.,
    7. Cerri C.C.
    . 2015. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil. Science of Total Environment 515-516:30-38, https://doi.org/10.1016/j.scitotenv.2015.02.025.
    OpenUrl
    1. Hillel D.
    1998. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations. San Diego, CA: Academic Press.
    1. Hunke P.,
    2. Mueller E.N.,
    3. Schröder B.,
    4. Zeilhofer P.
    . 2015a. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8:1154-1180, https://doi.org/10.1002/eco.1573.
    OpenUrl
    1. Hunke P.,
    2. Roller R.,
    3. Zeilhofer P.,
    4. Schröder B.,
    5. Mueller E.N.
    . 2015b. Soil changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Regional 4:31-43, https://doi.org/10.1016/j.geodrs.2014.12.001.
    OpenUrl
    1. IBGE (Instituto Brasileiro de geografia e Estatística)
    2018. Mapa de solos do Brasil. http://www.terrabrasilis.org.br/ecotecadigital/pdf/mapa-de-solos-do-brasil-ibge-.pdf.
    1. Karami A.,
    2. Homaee M.,
    3. Afzalinia S.,
    4. Ruhipour H.,
    5. Basirat S.
    . 2012. Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems and Environment 148:22-28, https://doi.org/10.1016/j.agee.2011.10.021.
    OpenUrl
    1. Ker J.C.
    1997. Latossolos do Brasil: Uma revisão. Geonomos 5:17-40.
    OpenUrl
    1. Kornecki T.S.,
    2. Fouss J.L.
    . 2011. Sugarcane residue management effects in reducing soil erosion from quarter drains in southern Louisiana. Applied Engineering in Agriculture 27:597-603.
    OpenUrl
    1. Lal R.
    2009. Soil quality impacts of residue removal for bioethanol production. Soil and Tillage Research 102:233-241, https://doi.org/10.1016/j.still.2008.07.003.
    OpenUrlCrossRef
    1. Leal M.R.L.V.,
    2. Galdos M.V.,
    3. Scarpare F.V.,
    4. Seabra J.E.A.,
    5. Walter A.,
    6. Oliveira C.O.F.
    . 2013. Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy 53:11-19, https://doi.org/10.1016/j.biombioe.2013.03.007.
    OpenUrl
    1. Liao Q.,
    2. Wei G.P.,
    3. Chen G.F.,
    4. Liu B.,
    5. Huang D.L.,
    6. Li Y.R.
    . 2014. Effect of trash addition to the soil on microbial communities and physico-chemical properties of soils and growth of sugarcane plants. Sugar Tech 16:400-404, https://doi.org/10.1007/s12355-013-0296-8.
    OpenUrl
    1. Lisboa I.P.,
    2. Cherubin M.R.,
    3. Lima R.P.,
    4. Cerri C.C.,
    5. Satiro L.S.,
    6. Wienhold B.J.,
    7. Schmer M.R.,
    8. Jin V.L.,
    9. Cerri C.E.P.
    . 2018. Sugarcane straw removal effects on plant growth and stalk yield. Industrial Crops and Products 111:794-806, https://doi.org/10.1016/j.indcrop.2017.11.049.
    OpenUrl
    1. Liu M.-Y.,
    2. Chang Q.-R.,
    3. Qi Y.-B.,
    4. Liu J.,
    5. Chen T.
    . 2014. Aggregation and soil organic carbon fractions under different land uses on the tableland of the Loess Plateau of China. Catena 115:19-28, https://doi.org/10.1016/j.catena.2013.11.002.
    OpenUrlGeoRef
    1. Macedo I.C.
    2005. A energia da cana-de-açúcar: Doze estudos sobre a agroindústria da cana-de-açúcar no Brasil e a sua sustentabilidade. São Paulo, Brazil: Única.
    1. Marin F.R.,
    2. Thorburn P.J.,
    3. da Costa L.G.,
    4. Otto R.
    . 2014. Simulating long-term effects of trash management on sugarcane yield for Brazilian cropping systems. Sugar Tech 16:164-173, https://doi.org/10.1007/s12355-013-0265-2.
    OpenUrl
    1. Martinelli L.A.,
    2. Filoso S.
    . 2007. Polluting effects of Brazil's sugar-ethanol industry. Nature 445:364, doi:10.1038/445364c.
    OpenUrlPubMed
    1. Martins Filho M.V.,
    2. Liccioti T.T.,
    3. Pereira G.T.,
    4. Marques Júnior J.,
    5. Sanchez R.B.
    . 2009. Perdas de solo e nutrientes por erosão num Argissolo com resíduos vegetais de cana-de-açúcar. Engenharia Agrícola 29:8-18, http://dx.doi.org/10.1590/S0100-69162009000100002.
    OpenUrl
    1. Oliveira N.T.,
    2. Castro N.M.R.,
    3. Goldenfum J.A.
    . 2010. Influência da Palha no Balanço Hídrico em Lisímetros. Revista Brasileira de Recursos Hídricos 15:93-103.
    OpenUrl
    1. Olivier F.C.,
    2. Singels A.
    . 2012. The effect of crop residue layers on evapotranspiration, growth and yield of irrigated sugarcane. Water SA 38:77-86, https://doi.org/10.4314/wsa.v38i1.10.
    OpenUrl
    1. Otto R.,
    2. Silva A.P.,
    3. Franco H.C.J.,
    4. Oliveira E.C.A.,
    5. Trivelin P.C.O.
    . 2011. High soil penetration resistance reduces sugarcane root system development. Soil and Tillage Research 117:201-210, https://doi.org/10.1016/j.still.2011.10.005.
    OpenUrl
    1. Ruiz-Corrêa S.T.,
    2. Carvalho J.L.N.,
    3. Hernandes T.A.D.,
    4. Barbosa L.C.,
    5. Menandro L.M.S.,
    6. Leal M.R.L.V.
    . 2017. Assessing the effects of different amounts of sugarcane straw on temporal variability of soil moisture and temperature, 1691-1706. 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden. https://doi.org/10.5071/25thEUBCE2017-4AV.2.6.
    1. Satiro L.S.,
    2. Cherubin M.R.,
    3. Safanelli J.L.,
    4. Lisboa I.P.,
    5. da Rocha P.R. Jr..,
    6. Cerri C.E.P.,
    7. Cerri C.C.
    . 2017. Sugarcane straw removal effects on Ultisols and Oxisols in south-central Brazil. Geoderma Regional 11:86-95, https://doi.org/10.1016/j.geodrs.2017.10.005.
    OpenUrl
    1. Scanlon B.R.,
    2. Reedy R.C.,
    3. Keese K.E.,
    4. Dwyer S.F.
    . 2005. Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA. Vadose Zone Journal 4:55-71, https://doi.org/10.2136/vzj2006.0010.
    OpenUrlAbstract/FREE Full Text
    1. Scarpare F.V.
    2011. Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico SWAP/WOFOST. PhD Dissertation. Piracicaba: Universidade de São Paulo.
    1. Dallemand J.F.,
    2. Hilbert J.A.,
    3. Monforti F.
    1. Scarpare F.V.,
    2. Leal M.R.L.V.,
    3. Victoria R.L.
    . 2015. Sugarcane ethanol in Brazil: Challenges past, present and future. JRC Technical Reports. In Bioenergy and Latin America: A Multi-country Perspective, ed. Dallemand J.F., Hilbert J.A., Monforti F., 91-104. Luxembourg: Publications Office of the European Union, http://dx.doi.org/10.2790/246697.
    1. Sentelhas P.C.,
    2. Battisti R.,
    3. Câmara G.M.S.,
    4. Farias J.R.B.,
    5. Hampf A.C.,
    6. Nendel C.
    . 2015. The soybean yield gap in Brazil: Magnitude, causes and possible solutions for sustainable production. Journal of Agricultural Science 153:1394-1411, https://doi.org/10.1017/S0021859615000313.
    OpenUrl
    1. Silva T.G.F.,
    2. De Moura M.S.B.,
    3. Zolnier S.,
    4. Soares J.M.
    . 2011. Demanda hídrica e eficiência do uso de água da cana-de-açúcar irrigada no semiárido brasileiro. Resvista Brasileira de Engenharia Agrícola e Ambiental 15:1257-1265.
    OpenUrl
    1. Singh P.N.,
    2. Shukla S.K.,
    3. Bhatnagar V.K.
    . 2007. Optimizing soil moisture regime to increase water use efficiency of sugarcane (Saccharum spp. hybrid complex) in subtropical India. Agricultural Water Management 90:95-100, https://doi.org/10.1016/J.AGWAT.2007.02.008.
    OpenUrl
    1. Smith P.,
    2. Smith J.U.O.,
    3. Powlson D.S.,
    4. McGill W.B.,
    5. Arah J.R.M.,
    6. Chertov O.G.,
    7. Coleman K.,
    8. Franko U.,
    9. Frolking S.,
    10. Jenkinson D.S.,
    11. Jensen L.S.,
    12. Kelly R.H.,
    13. Klein-Gunnewiek H.,
    14. Komarov A.S.,
    15. Li C.,
    16. Molina J.A.E.,
    17. Mueller T.,
    18. Parton W.J.,
    19. Thornley J.H.M.,
    20. Whitmore A.P.,
    21. Smith P.,
    22. Wattenbach M.,
    23. Zaehle S.,
    24. Hiederer R.,
    25. Jones R.J.,
    26. Montanarella L.,
    27. Rounsevell M.D.,
    28. Reginster I.,
    29. Ewert F.
    . 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153-225, https://doi.org/10.1016/S0016-7061(97)00087-6.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Soil Survey Staff
    . 2014. Keys to soil taxonomy. Soil Conservation Service 12:410, https://doi.org/10.1109/TIP.2005.854494.
    OpenUrl
    1. Sousa J.G.A. Jr..,
    2. Cherubin M.R.,
    3. Oliveira B.G.,
    4. Cerri C.E.P.,
    5. Cerri C.C.
    . 2018. Three-year soil carbon and nitrogen responses to sugarcane straw management. BioEnergy Research 11:249-261, https://doi.org/10.1007/s12155-017-9892-x.
    OpenUrl
    1. Souza G.S.,
    2. de Souza Z.M.,
    3. Cooper M.,
    4. Tormena C.A.
    . 2015. Controlled traffic and soil physical quality of an Oxisol under sugarcane cultivation. Scientia Agricola 72:270-277, https://doi.org/10.1590/0103-9016-2014-0078.
    OpenUrl
    1. Souza G.S.,
    2. Souza Z.M.,
    3. Silva R.B.,
    4. Barbosa R.S.,
    5. Araújo F.S.
    . 2014. Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo 38:135-146, https://doi.org/10.1590/S0100-06832014000100013.
    OpenUrl
    1. Thornthwaite C.W.,
    2. Mather J.R.
    . 1955. The Water Balance. Publications in Climatology, Volume VIII, 104. Centerton, NJ: Drexel Institute of Technology, Laboratory of Climatology.
    1. Tomasella J.,
    2. Hodnett M.G.,
    3. Rossato L.
    . 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Science Society of America Journal 64:327-338.
    OpenUrlCrossRefGeoRefWeb of Science
    1. Valim W.C.,
    2. Panachuki E.,
    3. Pavei D.S.,
    4. Sobrinho T.A.,
    5. Almeida W.S.
    . 2016. Effect of sugarcane waste in the control of interrill erosion. Semina Agraria 37:1155-1164, https://doi.org/10.5433/1679-0359.2016v37n3p1155.
    OpenUrl
    1. van Genuchten M.T.
    1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44:892-898.
    OpenUrlCrossRefGeoRefWeb of Science
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (5)
Journal of Soil and Water Conservation
Vol. 74, Issue 5
September/October 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Sugarcane straw removal effects on soil water storage and drainage in southeastern Brazil
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Sugarcane straw removal effects on soil water storage and drainage in southeastern Brazil
M.R. Gmach, F.V. Scarpare, M.R. Cherubin, I.P. Lisboa, A.K. Belarmino dos Santos, C.E. Pellegrino Cerri, C.C. Cerri
Journal of Soil and Water Conservation Sep 2019, 74 (5) 466-476; DOI: 10.2489/jswc.74.5.466

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Sugarcane straw removal effects on soil water storage and drainage in southeastern Brazil
M.R. Gmach, F.V. Scarpare, M.R. Cherubin, I.P. Lisboa, A.K. Belarmino dos Santos, C.E. Pellegrino Cerri, C.C. Cerri
Journal of Soil and Water Conservation Sep 2019, 74 (5) 466-476; DOI: 10.2489/jswc.74.5.466
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the Agricultural Conservation Planning Framework toolbox in a Southern Piedmont landscape of the United States
  • Soil erodibility after the removal of wood chip mulch: A wind tunnel experiment
  • Environmental impact of the historical slag pile at Davenport, Iowa, United States: Trace metal contamination in soils and terrestrial vegetation
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society