Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Capture of stormwater runoff and pollutants by three types of urban best management practices

C. Karnatz, J.R. Thompson and S. Logsdon
Journal of Soil and Water Conservation September 2019, 74 (5) 487-499; DOI: https://doi.org/10.2489/jswc.74.5.487
C. Karnatz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.R. Thompson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Logsdon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Land cover changes associated with urbanization produce hydrological alterations, which often diminish infiltration, leading to increased runoff volumes, peak flows, and greater need for pollution control. A number of urban “green infrastructure” best management practices (BMPs) have been designed to capture and contain stormwater runoff near the source. Although implementation of such practices has slowly increased, lack of evidence about their effectiveness in reducing the quantity and improving the quality of stormwater runoff may still limit the degree to which they are implemented. The objectives of this study were to assess performance of three types of urban stormwater BMPs by measuring their soil characteristics, infiltration rates, runoff reduction, and water quality parameters compared to adjacent contributing areas. Three types of practices—bioretention cells, native landscaping (reconstructed prairie areas), and three-zone vegetated riparian buffers located in Ames and Ankeny, Iowa—were assessed by conducting infiltration tests and collecting soil and water samples. For the biocells in particular, practice surface areas were smaller in relation to their contributing areas than is recommended in current design criteria. On average, the bioretention cells and the buffers' wooded zones had significantly lower soil bulk densities, higher infiltration rates, and smaller runoff volumes than those of contributing areas. Time-to-runoff was particularly high for bioretention cells. Infiltration characteristics of the native landscapes (reconstructed prairie) and buffer prairie zones we studied were not significantly different from those of the contributing areas. Total extractable hydrocarbon concentrations were elevated in the bioretention cells, while metals such as chromium (Cr) had greater concentrations in the contributing areas. Based on these findings, we recommend careful attention to sizing, particularly for biocells, and suggest routine incorporation of soil amendments (such as compost) to improve the performance of reconstructed prairie areas. Our findings also suggest that more widespread implementation of these source-control measures in retrofit of existing developments and/or in the design of newly urbanizing areas will be effective for reducing stormwater runoff volumes and improving water quality.

  • © 2019 by the Soil and Water Conservation Society

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (5)
Journal of Soil and Water Conservation
Vol. 74, Issue 5
September/October 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Capture of stormwater runoff and pollutants by three types of urban best management practices
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
9 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Capture of stormwater runoff and pollutants by three types of urban best management practices
C. Karnatz, J.R. Thompson, S. Logsdon
Journal of Soil and Water Conservation Sep 2019, 74 (5) 487-499; DOI: 10.2489/jswc.74.5.487

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Capture of stormwater runoff and pollutants by three types of urban best management practices
C. Karnatz, J.R. Thompson, S. Logsdon
Journal of Soil and Water Conservation Sep 2019, 74 (5) 487-499; DOI: 10.2489/jswc.74.5.487
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society