Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Assessment of the Soil Conservation Service–Curve Number method performance in a tropical Oxisol watershed

G.J. Alves, C. Rogério de Mello, S. Beskow, J.A. Junqueira and M.A. Nearing
Journal of Soil and Water Conservation September 2019, 74 (5) 500-512; DOI: https://doi.org/10.2489/jswc.74.5.500
G.J. Alves
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Rogério de Mello
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Beskow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.A. Junqueira Jr.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Nearing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Ajmal M.,
    2. Ahn J.H.,
    3. Kim T.W.
    . 2016a. Excess stormwater quantification in ungauged watersheds using an event-based modified NRCS model. Water Resources Management 30(4):1433-1448.
    OpenUrl
    1. Ajmal M.,
    2. Kim T.W.
    . 2014. Quantifying excess storm water using SCS-CN–based rainfall runoff models and different curve number determination methods. Journal of Irrigation and Drainage Engineering 141(3):04014058.
    OpenUrl
    1. Ajmal M.,
    2. Kim T.W.,
    3. Ahn J.H.
    . 2016b. Stability assessment of the curve number methodology used to estimate excess rainfall in forest-dominated watersheds. Arabic Journal of Geosciences 9(5):402-407.
    OpenUrl
    1. Ajmal M.,
    2. Moon G.,
    3. Ahn J.H.,
    4. Kim T.W.
    . 2015a. Investigation of SCS-CN and its inspired modified models for runoff estimation in South Korean watersheds. Journal of Hydro-environment Research 9(4):592-603, https://doi.org/10.1016/j.jher.2014.11.003.
    OpenUrl
    1. Ajmal M.,
    2. Waseem M.,
    3. Ahn J.,
    4. Kim T.W.
    . 2015b. Improved runoff estimation using event-based rainfall-runoff models. Water Resources Management 29(6):1995-2010.
    OpenUrl
    1. Alvarenga C.C.,
    2. Mello C.R.,
    3. Mello J.M.,
    4. Silva A.M.,
    5. Curi N.
    . 2012. Índice de qualidade do solo associado à recarga de água subterrânea (IQS RA) na bacia hidrográfica do alto Rio grande, MG. Revista Brasileira de Ciência do Solo 36:1608-1619 (In Portuguese with Abstract in English).
    OpenUrl
    1. Aquino R.F.,
    2. Silva M.N.L.,
    3. Freitas D.A.F.,
    4. Curi N.,
    5. Mello C.R.,
    6. Avanzi J.C.
    . 2012. Spatial variability of the rainfall erosivity in southern region of Minas Gerais State, Brazil. Ciência e Agrotecnologia 36(5):533-542, http://dx.doi.org/10.1590/S1413-70542012000500006.
    OpenUrlCrossRef
    1. Back A.J.
    2011. Time distribution of heavy rainfall events in Urussanga, Santa Catarina State, Brazil. Acta Scientiarum Agronomy 33(4):583-588.
    OpenUrl
    1. Baltas E.A.,
    2. Dervos N.A.,
    3. Mimikou M.A.
    . 2007. Technical note: Determination of the SCS initial abstraction ratio in an experimental watershed in Greece. Hydrology Earth System Science 11(6):1825-1829, https://doi.org/10.5194/hess-11-1825-2007.
    OpenUrl
    1. Beskow S.,
    2. Mello C.R.,
    3. Coelho G.,
    4. Silva A.M.,
    5. Viola M.R.
    . 2009. Estimativa do escoamento superficial em uma bacia hidrográfica com base em modelagem dinâmica e distribuída. Revista Brasileira de Ciência Solo 33(1):46-52, http://dx.doi.org/10.1590/S0100-06832009000100018.
    OpenUrl
    1. Beskow S.,
    2. Mello C.R.,
    3. Norton L.D.,
    4. Silva A.M.
    . 2011. Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions. Catena 86(3):160-171, https://doi.org/10.1016/j.catena.2011.03.010.
    OpenUrlGeoRef
    1. Beskow S.,
    2. Norton L.D.,
    3. Mello C.R.
    . 2013. Hydrological prediction in a tropical watershed dominated by oxisols using a distributed hydrological model. Water Resources Management 27(2):341-363.
    OpenUrlGeoRef
    1. Bonta J.V.
    2015. Curve number method response to historical climate variability and trends. Transactions of the ASABE 58(2):319-334.
    OpenUrl
    1. Chen C.L.
    1982. An evaluation of the mathematics and physical significance of the Soil Conservation Service Curve Number procedure for estimating runoff volume. In Proceedings of the International Symposium on Rainfall-Runoff Modeling, Water Resources Publications, Littleton, Colorado, 387-418.
    1. D'Asaro F.,
    2. Grillone G.
    . 2012. Empirical investigation of curve number method parameters in the Mediterranean area. Journal of Hydrologic Engineering 17(10):1141-1152.
    OpenUrl
    1. D'Asaro F.,
    2. Grillone G.,
    3. Hawkins R.H.
    . 2014. Curve Number: Empirical evaluation and comparison with Curve Number handbook tables in Sicily. Journal of Hydrologic Engineering 19(12):04014035.
    OpenUrl
    1. Deshmukh D.S.,
    2. Chaube U.C.,
    3. Ekube H.A.,
    4. Aberra G.D.,
    5. Tegene K.M.
    . 2013. Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope. Journal of Hydrology 492:89-101.
    OpenUrlGeoRef
    1. Elhakeem M.,
    2. Papanicolaou A.N.
    . 2009. Estimation of the runoff curve number via direct rainfall simulator measurements in the State of Iowa, USA. Water Resources Management 23(12):2455-2473.
    OpenUrlCrossRef
    1. Endale D.M.,
    2. Schomberg H.H.,
    3. Fisher D.S.,
    4. Jenkins M.B.
    . 2015. Curve numbers from conventional and no-till cropping: A 39-year dataset from a small Georgia piedmont watershed. Transactions of the ASABE 58(2):379-391.
    OpenUrl
    1. Garen D.C.,
    2. Moore D.S.
    . 2005. Curve number hydrology in water quality modeling: Uses, abuses, and future directions. Journal of American Water Resources Association 41(2):377-388.
    OpenUrl
    1. Garg V.,
    2. Nikarn B.R.,
    3. Thakur P.K.,
    4. Aggarwal S.P.
    . 2013. Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. International Journal of Hydrological Science and Technology 3(2):141-159.
    OpenUrl
    1. Gomes N.M.,
    2. Mello C.R.,
    3. Silva A.M.,
    4. Beskow S.
    . 2008. Aplicabilidade do LISEM (Limburg Soil Erosion Model) para simulação hidrológica em uma bacia hidrográfica tropical. Revista Brasileira de Ciência do Solo 32(6):2483-2492, http://dx.doi.org/10.1590/S0100-06832008000600025.
    OpenUrl
    1. Hawkins R.H.
    1993. Asymptotic determination of runoff curve numbers from data. Journal of Irrigation and Drainage Engineering 119(2):334-345.
    OpenUrl
    1. Hawkins R.H.,
    2. Jiang R.,
    3. Woodward D.E.,
    4. Hjelmfelt A.T.,
    5. Van Mullem J.A.
    . 2002. Runoff Curve Number Method: Examination of the Initial Abstraction Ratio. In Proceedings of the Second Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada. Lakewood, CO: US Geological Survey.
    1. Hawkins R.H.,
    2. Ward T.J.,
    3. Woodward D.E.,
    4. Van Mullem J.A.
    . 2009. Curve number hydrology: State of practice. Reston, VA: American Society of Civil Engineers.
    1. Hjelmfelt A.T. Jr..,
    2. Woodward D.A.,
    3. Conaway G.,
    4. Plummer A.,
    5. Quan Q.D.,
    6. Van Mullen J.,
    7. Hawkins R.H.,
    8. Rietz D.
    . 2001. Curve numbers, recent developments. In Proceedings of the 29th Congress of the International Association for Hydraulic Research, Beijing, China (CD ROM), September 17-21, 2001.
    1. Huff F.A.
    1967. Time distribution of rainfall in heavy storms. Water Resources Research 3(4):1007-1019.
    OpenUrlCrossRef
    1. Huizinga R.J.
    2014. An initial abstraction and constant loss model, and methods for estimating unit hydrographs, peak streamflows, and flood volumes for urban basins in Missouri. USGS Scientific Investigation 2014-5193. Reston, VA: US Department of the Interior, US Geological Survey. https://doi.org/10.3133/sir20145193.
    1. Jain M.K.,
    2. Mishra S.K.,
    3. Babu P.S.,
    4. Venugopal K.,
    5. Singh V.P.
    . 2006a. Enhanced runoff curve number model incorporating storm duration and a nonlinear Ia-S relation. Journal of Hydrological Engineering 11(6):631-635.
    OpenUrl
    1. Jain M.K.,
    2. Mishra S.K.,
    3. Suresh B.P.,
    4. Venugopal K.
    . 2006b. On the Ia–S relation of the SCS-CN model. Nord Hydrology 37(3):261-275.
    OpenUrl
    1. Jena S.K.,
    2. Tiwari K.N.,
    3. Pandey A.,
    4. Mishra S.K.
    . 2012. RS and geographical information system-based evaluation of distributed and composite curve number techniques. Journal of Hydrologic Engineering 17(11):1278-1286.
    OpenUrl
    1. Jeon J.H.,
    2. Lim K.J.,
    3. Engel B.A.
    . 2014. Regional calibration of SCS-CN L-THIA model: Application for ungauged basins. Water 6(5):1339-1359.
    OpenUrl
    1. Kowalik T.,
    2. Walega A.
    . 2015. Estimation of CN parameter for small agricultural watersheds using asymptotic functions. Water 7(3):939-955.
    OpenUrl
    1. Lal M.,
    2. Mishra S.K.,
    3. Pandey A.
    . 2015. Physical verification of the effect of land features and antecedent moisture on runoff curve number. Catena 133(10):318-327.
    OpenUrlCrossRef
    1. Mello C.R.,
    2. Lima J.M.,
    3. Silva A.M.,
    4. Lopes D.
    . 2003. Abstração inicial da precipitação em microbacia hidrográfica com escoamento efêmero. Revista Brasileira de Engenharia Agrícola e Ambiental 7(3):494-500.
    OpenUrl
    1. Mello C.R.,
    2. Norton L.D.,
    3. Pinto L.C.,
    4. Beskow S.,
    5. Curi N.
    . 2016. Agricultural watershed modeling: A review for hydrology and soil erosion processes. Ciência e Agrotecnologia 40(1):7-25, http://dx.doi.org/10.1590/S1413-70542016000100001.
    OpenUrl
    1. Mello C.R.,
    2. Viola M.R.
    . 2013. Mapeamento de chuvas intensas no estado de Minas Gerais. Revista Brasileira de Ciência do Solo 37(1):106-112, http://dx.doi.org/10.1590/S0100-06832013000100004.
    OpenUrl
    1. Miliani F.,
    2. Ravazzani G.,
    3. Mancini M.
    . 2010. Adaptation of precipitation index for the estimation of antecedent moisture condition in large mountainous basins. Journal of Hydrologic Engineering 16(3):218-227.
    OpenUrl
    1. Mishra S.K.,
    2. Jain M.K.,
    3. Singh V.P.
    . 2004. Evaluation of the SCS-CN-based model incorporating antecedent moisture. Water Resources Management 18(6):567-589.
    OpenUrl
    1. Mishra S.K.,
    2. Sahu R.K.,
    3. Eldho T.I.,
    4. Jain M.K.
    . 2006. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology. Water Resources Management 20:643-660.
    OpenUrl
    1. Mishra S.K.,
    2. Singh V.P.
    . 2003. Soil Conservation Service Curve Number (SCS-CN) Methodology ‘Kluwer’. Dordrecht, The Netherlands: Academic Publishers.
    1. Mishra S.K.,
    2. Singh V.P.
    . 2006. A relook at NEH–4 curve number data and antecedent moisture condition criteria. Hydrological Processes 20(13):2755-2768.
    OpenUrl
    1. Moon G.W.,
    2. Ajmal M.,
    3. Ahn J.H.,
    4. Kim T.W.
    . 2016. Investigating practical alternatives to the NRCS-CN method for direct runoff estimation using slope-adjusted curve numbers. Journal of Civil Engineering 20(7):3022-3030.
    OpenUrl
    1. Musy A.,
    2. Hingray B.,
    3. Picouet C.
    . 2014. Hydrology: A science for engineers. Boca Raton, FL: CRC Press.
    1. Nash J.E.,
    2. Sutcliffe J.V.
    . 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology 10(3):282-290.
    OpenUrlCrossRefGeoRef
    1. Reboita M.S.,
    2. Gan M.A.,
    3. Rocha R.P.,
    4. Ambrizzi T.
    . 2010. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Revista Brasileira de Meteorologia 25(2):32-39, http://dx.doi.org/10.1590/S0102-77862010000200004.
    OpenUrl
    1. Sartori A.,
    2. Lombardi N.F.,
    3. Genovez A.M.
    . 2005. Classificação hidrológica de solos brasileiros para a estimativa da chuva excedente com o método do Serviço de Conservação do Solo dos Estados Unidos Parte 1: Classificação. Revista Brasilera de Recursos Hídricos 10(4):05-18 (In Portuguese with abstract in English).
    OpenUrl
    1. SCS (Soil Conservation Service)
    . National Engineering Handbook, Section 4. 1956. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. SCS
    . National Engineering Handbook, Section 4. 1964. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. SCS
    . National Engineering Handbook, Section 4. 1971. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. SCS
    . National Engineering Handbook, Section 4. 1985. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. SCS
    . National Engineering Handbook, Section 4. 1993. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. SCS
    . National Engineering Handbook, Section 4. 2004. Hydrology. Washington, DC: USDA Soil Conservation Service.
    1. Shi Z.H.,
    2. Chen L.D.,
    3. Fang N.F.,
    4. Qin D.F.,
    5. Cai C.F.
    . 2009. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China. Catena 77(1):1-7, https://doi.org/10.1016/j.catena.2008.11.006.
    OpenUrlCrossRefGeoRef
    1. Silva S.H.G.,
    2. de Menezes M.D.,
    3. Owens P.R.,
    4. Curi N.
    . 2016. Retrieving pedologist's mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil. Geoderma 267(1):65-77, https://doi.org/10.1016/j.geoderma.2015.12.025.
    OpenUrlGeoRef
    1. Silveira L.,
    2. Charbonnier F.,
    3. Genta J.L.
    . 2000. The antecedent soil moisture condition of the curve number procedure. Hydrological Science Journal 45(1):3-12, https://doi.org/10.1080/02626660009492302.
    OpenUrl
    1. Soil Taxonomy
    . 2014. Soil Taxonomy. In Keys to Soil Taxonomy, 12th ed. Washington, DC: USDA Natural Resources Conservation Service.
    1. Soulis K.X.,
    2. Valiantzas J.D.
    . 2012. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds-the two-CN system approach. Hydrology Earth System Science 16(3):1001-1009.
    OpenUrl
    1. Soulis K.X.,
    2. Valiantzas J.D.
    . 2013. Identification of the SCS-CN parameter spatial distribution using rainfall-runoff data in heterogeneous watersheds. Water Resources Management 27(6):1737-1749.
    OpenUrl
    1. Soulis K.X.,
    2. Valiantzas J.D.,
    3. Dercas N.,
    4. Londra P.A.
    . 2009. Investigation of the direct runoff generation mechanism for the analysis of the SCS-CN method applicability to a partial area experimental watershed. Hydrology Earth System Science 13(5):605-615, https://doi.org/10.5194/hess-13-605-2009.
    OpenUrl
    1. Tramblay Y.,
    2. Bouvier C.,
    3. Martin C.,
    4. Didon-Lescot J.F.,
    5. Todorovik D.,
    6. Domergue J.M.
    . 2010. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology 387(3):176-187, https://doi.org/10.1016/j.jhydrol.2010.04.006.
    OpenUrlGeoRef
    1. Van Mullem J.A.,
    2. Woodward D.E.,
    3. Hawkins R.H.,
    4. Hjelmfelt A.T.,
    5. Quan Q.D.
    . 2002. Runoff curve number method: Beyond the handbook. In Proceedings of the 2nd Federal Interagency Hydrologic Modeling Conference, Advisory Committee on Water Information (ACWI), Washington, DC.
    1. Walega A.,
    2. Michalec B.,
    3. Cupak A.,
    4. Grzebinoga M.
    . 2015. Comparison of SCS-CN determination methodologies in a heterogeneous catchment. Journal of Mountain Science 12(5):1084-1094.
    OpenUrl
    1. Woodward D.E.,
    2. Jiang R.,
    3. Woodward D.E.,
    4. Hjelmfelt A.T.,
    5. VanMullem J.E.
    . 2003. Runoff curve number method: Examination of the initial abstraction ratio. In World Water and Environmental Resources Congress, Philadelphia, Pennsylvania, June 23-26, 2003. American Society of Civil Engineers (ASCE).
    1. Yuan Y.,
    2. Wenming N.,
    3. Steven C.,
    4. Cutcheon M.,
    5. Encarnación V.
    . 2014. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona. Hydrological Processes 28(3):774-783.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 74 (5)
Journal of Soil and Water Conservation
Vol. 74, Issue 5
September/October 2019
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of the Soil Conservation Service–Curve Number method performance in a tropical Oxisol watershed
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Assessment of the Soil Conservation Service–Curve Number method performance in a tropical Oxisol watershed
G.J. Alves, C. Rogério de Mello, S. Beskow, J.A. Junqueira, M.A. Nearing
Journal of Soil and Water Conservation Sep 2019, 74 (5) 500-512; DOI: 10.2489/jswc.74.5.500

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Assessment of the Soil Conservation Service–Curve Number method performance in a tropical Oxisol watershed
G.J. Alves, C. Rogério de Mello, S. Beskow, J.A. Junqueira, M.A. Nearing
Journal of Soil and Water Conservation Sep 2019, 74 (5) 500-512; DOI: 10.2489/jswc.74.5.500
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Assessing the Agricultural Conservation Planning Framework toolbox in a Southern Piedmont landscape of the United States
  • Soil erodibility after the removal of wood chip mulch: A wind tunnel experiment
  • Cover crops and specialty crop agriculture: Exploring cover crop use among vegetable and fruit growers in Michigan and Ohio
Show more Research Section

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society