Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils

A.L. Thompson, C. Baffaut, S. Lohani, L.F. Duriancik, M.L. Norfleet and K. Ingram
Journal of Soil and Water Conservation January 2020, 75 (1) 1-11; DOI: https://doi.org/10.2489/jswc.75.1.1
A.L. Thompson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Baffaut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Lohani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.F. Duriancik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.L. Norfleet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Ingram
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Alonso C.V.,
    2. Bingner R.L.
    . 2000. Goodwin Creek Experimental Watershed: A unique field laboratory. Journal of Hydraulic Engineering 126(3):174-177.
    OpenUrl
  2. ↵
    1. Arnold J.,
    2. Moriasi G.D.,
    3. Gassman P.W.,
    4. Abbaspour K.C.,
    5. White M.J.,
    6. Srinivasan M.S.,
    7. Santhi C.,
    8. Harmel R.D.,
    9. van Griensven A.,
    10. Van Liew M.W.,
    11. Kannan N.,
    12. Jha M.
    . 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1491-1508.
    OpenUrl
  3. ↵
    1. Aryal N.,
    2. Reba M.L.
    . 2017. Transport and transformation of nutrients and sediment in two agricultural watersheds in northeast Arkansas. Agriculture, Ecosystems and Environment 236:30-42.
    OpenUrlCrossRef
  4. ↵
    1. Baffaut C.,
    2. Lohani S.,
    3. Thompson A.L.,
    4. Davis A.R.,
    5. Aryal N.,
    6. Bjorneberg D.L.,
    7. Bingner R.L.,
    8. Dabney S.M.,
    9. Duriancik L.F.,
    10. James D.E.,
    11. King K.W.,
    12. Lee S.,
    13. McCarty G.W.,
    14. Pease L.A.,
    15. Reba M.L.,
    16. Sadeghi A.M.,
    17. Tomer M.D.,
    18. Williams M.R.,
    19. Yasarer L.M.W.
    . 2020. Evaluation of the Soil Vulnerability Index for artificially drained agricultural land across eight Conservation Effects Assessment Project watersheds. Journal of Soil and Water Conservation 75(1):28-41, doi:10.2489/jswc.75.1.28.
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Baveye P.C.,
    2. Rangel D.,
    3. Jacobson A.R.,
    4. Laba M.,
    5. Darnault C.,
    6. Otten W.,
    7. Radulovich R.,
    8. Camargo F.A.O.
    . 2011. From Dust Bowl to Dust Bowl: Soils are still very much a frontier of science. Soil Science Society of America Journal 75(6):2037-2048.
    OpenUrlCrossRefGeoRef
  6. ↵
    1. Beven K.J.,
    2. Kirkby M.J.
    . 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin 24(1):43-69.
    OpenUrlCrossRef
  7. ↵
    1. Bosch D.D.,
    2. Sheridan J.M.,
    3. Lowrance R.R.,
    4. Hubbard R.K.,
    5. Strickland T.C.,
    6. Feyereisen G.W.,
    7. Sullivan D.G.
    . 2007. Little River Experimental Watershed database. Water Resources Research 43(9), doi:10.1029/2006WR005844.
  8. ↵
    1. Carter D.L.,
    2. Bondurant J.A.,
    3. Robbins C.W.
    . 1971. Water soluble NO3-nitrogen, PO4-phosphorus, and total salt balances on a large irrigation tract. Soil Science Society of America Proceedings 35(2):331-335.
    OpenUrl
  9. ↵
    1. Chan R.C.,
    2. Thompson Baffaut, A.L.,
    3. Sadler E.J.
    . 2017. Validating the Soil Vulnerability Index for a claypan watershed. Catena 148:185-194.
    OpenUrl
  10. ↵
    1. Chaubey I.,
    2. Chiang L.,
    3. Gitau M.W.,
    4. Mohamed S.
    . 2010. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. Journal of Soil and Water Conservation 65(6):424-437, doi:10.2489/jswc.65.6.424.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Dosskey M.G.,
    2. Qiu Z.,
    3. Helmers M.J.,
    4. Eisenhauer D.E.
    . 2011. Improved indexes for targeting placement of buffers of Hortonian runoff. Journal of Soil and Water Conservation 66(6):362-372, doi:10.2489/jswc.66.6.362.
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Douglas L.K.,
    2. Dinnes D.L.,
    3. Jaynes D.B.,
    4. Hurburgh C.R.,
    5. Cambardella C.A.,
    6. Colvin T.S.,
    7. Rippke G.R.
    . 2005. Corn response to late-spring nitrogen management in the Walnut Creek watershed. Agronomy Journal 97(4):1054-1061.
    OpenUrlCrossRefWeb of Science
  13. ↵
    1. Douglas-Mankin K.R.,
    2. Srinivasan R.,
    3. Arnold J.G.
    . 2010. Soil and water assessment tool (SWAT) model: Current developments and applications. Transactions of the ASABE 53(5):1423-1431.
    OpenUrl
  14. ↵
    1. Duriancik L.F.,
    2. Bucks D.,
    3. Dobrowolski J.P.,
    4. Drewes T.,
    5. Eckles S.D.,
    6. Jolley L.,
    7. Kellogg R.L.,
    8. Lund D.,
    9. Makuch J.R.,
    10. O'Neill M.P.,
    11. Rewa C.A.,
    12. Walbridge M.R.,
    13. Parry R.,
    14. Weltz M.A.
    . 2008. The first five years of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation 63(6):185A-197A, doi:10.2489/jswc.63.6.185A.
    OpenUrlFREE Full Text
  15. ↵
    1. Fisher T.R.,
    2. Benitez J.A.,
    3. Lee K.,
    4. Sutton A.J.
    . 2006. History of land cover change and biogeochemical impacts in the Choptank River basin in the mid-Atlantic region of the US. International Journal of Remote Sensing 27(17):3683-3703.
    OpenUrl
  16. ↵
    1. Green C.H.,
    2. Tomer M.D.,
    3. Di Luzio M.,
    4. Arnold J.G.
    . 2006. Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iowa. Transactions of the ASABE 49(2):413-422.
    OpenUrl
  17. ↵
    1. Harmel R.D.,
    2. Richardson C.W.,
    3. King K.W.,
    4. Allen P.M.
    . 2006. Runoff and soil loss relationships for the Texas Blackland Prairies ecoregion. Journal of Hydrology 331(3-4):471-483.
    OpenUrlCrossRefGeoRef
  18. ↵
    1. Inamdar S.P.,
    2. Mostaghimi S.,
    3. Cook M.N.,
    4. Brannan K.M.,
    5. McClellen P.W.
    . 2002. A long-term watershed-scale evaluation of the impacts of animal waste BMPs on indicator bacteria concentrations. Journal of the American Water Resources Association 38(3):819-833.
    OpenUrlCrossRef
  19. ↵
    1. Manley P.,
    2. Manely T.O.,
    3. Mihuc T.B.
    1. Jokela W.E.,
    2. Clausen J.C.,
    3. Meals D.W.,
    4. Sharpley A.N.
    . 2004. Effectiveness of agricultural best management practices in reducing phosphorus loading to Lake Champlain. In Lake Champlain: Partnership and Research in the New Millennium, ed. Manley P., Manely T.O., Mihuc T.B., 39-52. New York: Kluwer Academic/Plenum Publishing.
  20. ↵
    1. King K.W.,
    2. Smiley P.C. Jr..,
    3. Baker B.J.,
    4. Fausey N.R.
    . 2008. Validation of paired watersheds for assessing conservation practices in the Upper Big Walnut Creek watershed, Ohio. Journal of Soil and Water Conservation 63(6):380-395, doi:10.2489/jswc.63.6.380.
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Lizotte R.E.,
    2. Yasarer L.M.W.,
    3. Locke M.A.,
    4. Bingner R.L.,
    5. Knight S.S.
    . 2017. Lake nutrient responses to integrated conservation practices in an agricultural watershed. Journal of Environmental Quality 46(2):330-338, doi:10.2134/jeq2016.08.0324.
    OpenUrlCrossRef
  22. ↵
    1. Lohani S.,
    2. Baffaut C.,
    3. Thompson A.L.,
    4. Aryal N.,
    5. Bingner R.L.,
    6. Bjorneberg D.L.,
    7. Bosch D.D.,
    8. Bryant R.B.,
    9. Buda A.,
    10. Dabney S.M.,
    11. Davis A.R.,
    12. Duriancik L.F.,
    13. James D.E.,
    14. King K.W.,
    15. Kleinman P.J.A.,
    16. Locke M.,
    17. McCarty G.W.,
    18. Pease L.A.,
    19. Reba M.L.,
    20. Smith D.R.,
    21. Tomer M.D.,
    22. Veith T.L.,
    23. Williams M.R.,
    24. Yasarer L.M.W.
    . 2020a. Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group. Journal Soil and Water Conservation 75(1):12-27, doi:10.2489/jswc.75.1.12.
    OpenUrl
  23. ↵
    1. Lohani S.,
    2. Baffaut C.,
    3. Thompson A.L.,
    4. Sadler E.J.
    . 2020b. Soil Vulnerability Index assessment as a tool to explain annual constituent loads in a nested watershed. Journal of Soil and Water Conservation 75(1):42-52, doi:10.2489/jswc.75.1.42.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. McCarty G.W.,
    2. McConnell L.L.,
    3. Hapeman C.J.,
    4. Sadeghi A.,
    5. Graff C.,
    6. Hively W.D.,
    7. Lang M.W.,
    8. Fisher T.R.,
    9. Jordan T.,
    10. Rice C.P.,
    11. Codling E.E.,
    12. Whitall D.,
    13. Lynn A.,
    14. Keppler J.,
    15. Fogel M.L.
    . 2008. Water quality and conservation practice effects in the Choptank River watershed, Journal of Soil and Water Conservation 63(6):461-474, doi:10.2489/jswc.63.6.461.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Osmond D.L.,
    2. Meals C.W.,
    3. Hoag D.,
    4. Arabi M.
    1. Meals D.W.,
    2. Osmond D.L.,
    3. Spooner J.,
    4. Line D.E.
    . 2012. Chapter 4: Water quality monitoring. In How to Build Better Agricultural Conservation Programs to Protect Water Quality: The National Institute of Food and Agriculture-Conservation Effects Assessment Project Experience, ed. Osmond D.L., Meals C.W., Hoag D., Arabi M., 58-83. Ankeny, IA: Soil and Water Conservation Society.
  26. ↵
    1. Moorman T.B.,
    2. Tomer M.D.,
    3. Smith D.R.,
    4. Jaynes D.B.
    . 2015. Evaluating the potential role of denitrifying bioreactors in reducing watershed-scale nitrate loads: A case study comparing three Midwestern (USA) watersheds. Ecological Engineering 75(2015):441-448.
    OpenUrlCrossRef
  27. ↵
    1. Nangia V.,
    2. Jianto D.,
    3. Changrong Y.,
    4. Xurong M.,
    5. Wenqing H.,
    6. Shuang L.,
    7. Qin L.
    . 2010. Using the field-scale effects of conservation agriculture on land and water productivity of rainfed maize in the Yellow River Basin, China. International Journal of Agricultural and Biological Engineering 3(2):5-17.
    OpenUrl
  28. ↵
    1. Osmond D.L.,
    2. Meals C.W.,
    3. Hoag D.,
    4. Arabi M.
    1. Osmond D.L.,
    2. Gassman P.,
    3. Schilling K.,
    4. Wolter C.,
    5. Kling C.L.,
    6. Helners M.,
    7. Isenhart T.,
    8. Simpkins W.,
    9. Moorman T.,
    10. Tomer M.,
    11. Rabotyagov S.,
    12. Jha M.,
    13. Hoag D.LK.,
    14. Meals D.W.,
    15. Arabi M.
    . 2012. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture–Conservation Effects Assessment Project. In How to Build Better Agricultural Conservation Programs to Protect Water Quality: The National Institute of Food and Agriculture-Conservation Effects Assessment Project Experience, ed. Osmond D.L., Meals C.W., Hoag D., Arabi M., 201-220. Ankeny, IA: Soil and Water Conservation Society.
  29. ↵
    1. Park S.W.,
    2. Mostaghimi S.,
    3. Cooke R.A.,
    4. McClellan P.W.
    . 1994. BMP impacts on watershed runoff, sediment, and nutrient yields. JAWRA Journal of the American Water Resources Association 30(6):1011-1023.
    OpenUrl
  30. ↵
    1. Saleh A.,
    2. Osei E.,
    3. Jaynes D.B.,
    4. Du B.,
    5. Arnold J.G.
    . 2007. Economic and environmental impacts LSNT and cover crops for nitrate-nitrogen reduction in Walnut Creek watershed, Iowa, using FEM (farm economic model) and enhanced SWAT models. Transactions of the ASABE 50(4):1251-1259.
    OpenUrl
  31. ↵
    1. Schilling K.E.,
    2. Tomer M.D.,
    3. Gassman P.W.,
    4. Kling C.L.,
    5. Isenhart T.M.,
    6. Moorman T.B.,
    7. Simpkins W.W.,
    8. Wolter C.F.
    . 2007. A tale of three watersheds: Nonpoint source pollution and conservation practices across Iowa. Choices 22(2):87-96.
    OpenUrl
  32. ↵
    1. Sharpley A.N.,
    2. Daniel T.,
    3. Gibson G.,
    4. Bundy L.,
    5. Cabrera M.,
    6. Sims T.,
    7. Stevens R.,
    8. Lemunyon J.,
    9. Kleinman P.,
    10. Parry R.
    . 2006. Best management practices to minimize agricultural phosphorus impacts on water quality. USDA Agricultural Research Service Publication 163. Washington, DC: US Government Printing Office.
  33. ↵
    1. Smith D.R.,
    2. Livingston S.J.,
    3. Zuercher B.W.,
    4. Larose M.,
    5. Heathman G.C.,
    6. Huang C.
    . 2008. Nutrient losses from row crop agriculture in Indiana. Journal of Soil and Water Conservation 63(6):396-409, doi:10.2489/jswc.63.6.396.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Staver L.W.,
    2. Staver K.W.,
    3. Stevenson J.C.
    . 1996. Nutrient inputs to the Choptank River Estuary: Implications for watershed management. Estauries 19(2B):342-358.
    OpenUrl
  35. ↵
    1. Stephenson L.W.,
    2. Veatch J.O.
    . 1915. Underground Waters of Coastal Plain of Georgia. US Geological Survey Water-Supply Paper 341. Washington, DC: US Geological Survey.
  36. ↵
    1. Tomer M.D.,
    2. James D.E.
    . 2004. Do soil surveys and terrain analyses identify similar priority sites for conservation? Soil Science Society of America Journal 68:1905-1915.
    OpenUrlCrossRefGeoRef
  37. ↵
    1. Tomer M.D.,
    2. Locke M.A.
    . 2011. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS's conservation effects assessment project watershed studies. Water Science and Technology (64.1):300-301.
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Tomer M.D.,
    2. Meek D.W.,
    3. Jaynes D.B.,
    4. Hatfield J.L.
    . 2003. Evaluation of nitrate nitrogen fluxes from a tile-drained watershed in central Iowa. Journal of Environmental Quality 32(2):642-653.
    OpenUrlCrossRefPubMedWeb of Science
  39. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2012a. Assessment of the effects of conservation practices in cultivated cropland in the Mississippi River Basin. In Conservation Effects Assessment Project (CEAP). Washington, DC: USDA Natural Resources Conservation Service.
  40. ↵
    1. USDA NRCS
    . 2012b. Conservation Compliance – Highly Erodible Land and Wetland Conservation. Washington, DC: USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/nc/programs/?cid=stelprdb1246527.
  41. ↵
    1. Williams M.R.,
    2. King K.W.,
    3. Fausey N.R.
    . 2015. Drainage water management effects on tile discharge and water quality. Agricultural Water Management 148:43-51.
    OpenUrl
  42. ↵
    1. Yan B.,
    2. Tomer M.D.,
    3. James D.E.
    . 2010. Historical channel movement and sediment accretion along the South Fork of the Iowa River. Journal of Soil and Water Conservation 65(1):1-8, doi:10.2489/jswc.65.1.1.
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Yasarer L.M.W.,
    2. Lohani S.,
    3. Bingner R.L.,
    4. Locke M.A.,
    5. Baffaut C.,
    6. Thompson A.L.
    . 2020. Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds. Journal of Soil and Water Conservation 75(1):53-61, doi:10.2489/jswc.75.1.53.
    OpenUrlAbstract/FREE Full Text
  44. ↵
    1. Yuan Y.,
    2. Locke M.A.,
    3. Bingner R.L.
    . 2008. Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment. Journal of Soil and Water Conservation 63(6):542-551, doi:10.2489/jswc.63.6.542.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (1)
Journal of Soil and Water Conservation
Vol. 75, Issue 1
January/February 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
6 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils
A.L. Thompson, C. Baffaut, S. Lohani, L.F. Duriancik, M.L. Norfleet, K. Ingram
Journal of Soil and Water Conservation Jan 2020, 75 (1) 1-11; DOI: 10.2489/jswc.75.1.1

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils
A.L. Thompson, C. Baffaut, S. Lohani, L.F. Duriancik, M.L. Norfleet, K. Ingram
Journal of Soil and Water Conservation Jan 2020, 75 (1) 1-11; DOI: 10.2489/jswc.75.1.1
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Development of the SVI
    • Validation Site Descriptions
    • Synthesis of SVI Evaluation
    • Summary and Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts
  • Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
  • Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group
  • Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds
  • Soil Vulnerability Index assessment as a tool to explain annual constituent loads in a nested watershed
  • Google Scholar

More in this TOC Section

Research Section

  • Assessing the Agricultural Conservation Planning Framework toolbox in a Southern Piedmont landscape of the United States
  • Soil erodibility after the removal of wood chip mulch: A wind tunnel experiment
  • Cover crops and specialty crop agriculture: Exploring cover crop use among vegetable and fruit growers in Michigan and Ohio
Show more Research Section

Special Research Section: Soil Vulnerability Index

  • Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds
  • Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group
Show more Special Research Section: Soil Vulnerability Index

Similar Articles

Keywords

  • erosion
  • leaching
  • sediment
  • Soil Vulnerability Index
  • targeting
  • threshold

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society