Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds

C. Baffaut, S. Lohani, A.L. Thompson, A.R. Davis, N. Aryal, D.L. Bjorneberg, R.L. Bingner, S.M. Dabney, L.F. Duriancik, D.E. James, K.W. King, S. Lee, G.W. McCarty, L.A. Pease, M.L. Reba, A.M. Sadeghi, M.D. Tomer, M.R. Williams and L.M.W. Yasarer
Journal of Soil and Water Conservation January 2020, 75 (1) 28-41; DOI: https://doi.org/10.2489/jswc.75.1.28
C. Baffaut
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Lohani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.L. Thompson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.R. Davis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Aryal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.L. Bjorneberg
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.L. Bingner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.M. Dabney
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.F. Duriancik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.E. James
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.W. King
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.W. McCarty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.A. Pease
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.L. Reba
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Sadeghi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.D. Tomer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.R. Williams
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.M.W. Yasarer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Alexander R.B.,
    2. Smith R.A.,
    3. Schwarz G.E.,
    4. Boyer E.W.,
    5. Nolan J.V.,
    6. Brakebill J.W.
    . 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River basin. Environment Sciences and Technology 42(3):822-830.
    OpenUrl
  2. ↵
    1. Aryal N.,
    2. Reba M.L.
    . 2017. Transport and transformation of nutrients and sediment in two agricultural watersheds in northeast Arkansas. Agriculture, Ecosystems and Environment 236:30-42.
    OpenUrlCrossRef
  3. ↵
    1. Aryal N.,
    2. Reba M.L.,
    3. Straitt N.,
    4. Teague T.G.,
    5. Bouldin J.,
    6. Dabney S.
    . 2018. Impact of cover crop and season on nutrients and sediment in runoff water measured at the edge of fields in the Mississippi Delta of Arkansas. Journal of Soil and Water Conservation 73(1):24-34, doi:10.2489/jswc.73.1.24.
    OpenUrlAbstract/FREE Full Text
    1. Bakhsh A.,
    2. Hatfield J.L.,
    3. Kanwar R.S.,
    4. Ma L.,
    5. Ahuja L.R.
    . 2004. Simulating nitrate drainage losses from a Walnut Creek watershed field. Journal of Environmental Quality 33:114-123.
    OpenUrlPubMedWeb of Science
  4. ↵
    1. Bengtson R.L.,
    2. Carter C.E.
    . 2004. The effect of subsurface drainage on water quality from soybeans. In Drainage VIII. St. Joseph, MI: American Society of Agricultural Engineers.
  5. ↵
    1. Bengtson R.L.,
    2. Carter C.E.,
    3. Fouss J.L.,
    4. Southwick L.M.,
    5. Willis G.H.
    . 1995. Agricultural drainage and water quality in Mississippi Delta. Journal Irrigation and Drainage Engineering 121:292-295.
    OpenUrl
  6. ↵
    1. Bhattarai R.,
    2. Kalita P.K.,
    3. Patel M.K.
    . 2009. Nutrient transport through a vegetative filter strip with subsurface drainage. Journal of Environmental Management 90(5):1868-1876.
    OpenUrlCrossRefPubMed
  7. ↵
    1. Bjorneberg D.L.,
    2. Westermann D.T.,
    3. Nelson N.O.,
    4. Kendrick J.H.
    . 2008. Conservation practice effectiveness in the irrigated Upper Snake River/Rock Creek watershed. Journal of Soil and Water Conservation 63(6):487-495, doi:10.2489/jswc.63.6.487.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Bosch D.D.,
    2. Truman C.C.,
    3. Potter T.L.,
    4. West L.T.,
    5. Strickland T.C.,
    6. Hubbard R.K.
    . 2012.a Tillage and slope position impact on field-scale hydrologic processes in the South Atlantic Coastal Plain. Agricultural Water Management 111:40-52.
    OpenUrlCrossRef
  9. ↵
    1. Brown M.J.,
    2. Carter D.L.,
    3. Bondurant J.A.
    . 1974. Sediment in irrigation and drainage waters and sediment inputs and outputs for two large tracts in southern Idaho. Journal of Environmental Quality 3(4):347-351.
    OpenUrl
  10. ↵
    1. Carter D.L.,
    2. Bondurant J.A.,
    3. Robbins C.W.
    . 1971. Water soluble NO3-nitrogen, PO4-phosphorus, and total salt balances on a large irrigation tract. Soil Science Society of America Proceedings 35(2):331-335.
    OpenUrl
  11. ↵
    1. Chan R.,
    2. Baffaut C.,
    3. Thompson A.L.,
    4. Sadler E.J.
    . 2017. Validating the Soil Vulnerability Index for a claypan watershed. CATENA 148(2):185-194.
    OpenUrl
  12. ↵
    1. Cullum R.F.,
    2. Locke M.A.,
    3. Knight S.S.
    . 2010. Effects of conservation reserve program on runoff and lake water quality in an oxbow lake watershed. Journal of International Environmental Application and Science 5(3):318-328.
    OpenUrl
  13. ↵
    1. Duriancik L.F.,
    2. Bucks D.A.,
    3. Dobrowolski J.P.,
    4. Drewes T.,
    5. Eckles S.D.,
    6. Jolley L.,
    7. Kellogg R.L.,
    8. Lund D.,
    9. Makuch J.R.,
    10. O'Neill M.P.,
    11. Rewa C.A.,
    12. Walbridge M.R.,
    13. Parry R.,
    14. Weltz M.A.
    . 2008. The first five years of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation 63(6):185A-197A, doi:10.2489/jswc.63.6.185A.
    OpenUrlFREE Full Text
  14. ↵
    1. Fausey N.R.,
    2. Brown L.C.,
    3. Belcher H.W.,
    4. Kanwar R.S.
    . 1995. Drainage water quality in Great Lakes and Cornbelt states. Journal of Irrigation and Drainage Engineering 121(4):283-288.
    OpenUrl
  15. ↵
    1. Fenstermacher D.E.,
    2. Rabenhorst M.C.,
    3. Lang M.W.,
    4. McCarty G.W.,
    5. Needelman B.A.
    . 2014. Distribution, morphometry, and land use of Delmarva Bays. Wetlands 34(6):1219-1228.
    OpenUrl
    1. Green C.H.,
    2. Tomer M.D.,
    3. Di Luzio M.,
    4. Arnold J.G.
    . 2006. Hydrologic evaluation of the Soil and Water Assessment Tool for a large tile-drained watershed in Iowa. Transactions of the ASABE 49(2):413-422.
    OpenUrl
  16. ↵
    1. Hatfield J.L.,
    2. Jaynes D.B.,
    3. Burkart M.R.,
    4. Cambardella C.A.,
    5. Moorman T.B.,
    6. Prueger J.H.,
    7. Smith M.A.
    . 1999. Water quality in Walnut Creek watershed: Setting and farming practices. Journal of Environmental Quality 28:11-24.
    OpenUrlGeoRef
  17. ↵
    1. Heathman G.C.,
    2. Larose M.,
    3. Ascough J.C.
    . 2009. Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow. Journal of Soil and Water Conservation 64(1):17-32, doi:10.2489/jswc.64.1.17.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Hershfield D.M.
    1961. Rainfall frequency atlas of the United States. Washington, DC: Weather Bureau, US Department of Commerce.
  19. ↵
    1. Hively W.D.,
    2. Hapeman C.J.,
    3. McConnell L.L.,
    4. Fisher T.R.,
    5. Rice C.P.,
    6. McCarty G.W.,
    7. Sadeghi A.M.,
    8. Whitall D.R.,
    9. Downey P.M.,
    10. Niño de Guzmán G.T.,
    11. Bialek-Kalinski K.,
    12. Lang M.W.,
    13. Gustafson A.B.,
    14. Sutton A.J.,
    15. Sefton K.A.,
    16. Harman Fetcho J.A.
    . 2011. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed. Science of the Total Environment 409(19):3866-3878.
    OpenUrlCrossRefPubMed
  20. ↵
    1. Irwin R.W.,
    2. Whitely H.R.
    . 1983. Effects of land drainage on stream flow. Canadian Water Resources Journal 8:88-103.
    OpenUrl
  21. ↵
    1. Istok J.D.,
    2. Kling G.F.
    . 1983. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, USA. Journal of Hydrology 65:279-291.
    OpenUrlGeoRef
  22. ↵
    1. James L.G.
    1988. Principles of Farm Irrigation System Design. New York: John Wiley and Sons.
  23. ↵
    1. Karlen D.L.,
    2. Tomer M.D.,
    3. Neppel J.,
    4. Cambardella C.A.
    . 2008. A preliminary watershed scale soil quality assessment in north central Iowa, USA. Soil and Tillage Research 99(2):291-299.
    OpenUrl
  24. ↵
    1. Keller C.K.,
    2. Butcher C.N.,
    3. Smith J.L.,
    4. Allen-King R.M.
    . 2008. Nitrate in tile drainage of the semiarid Palouse basin. Journal of Environmental Quality 37(2):353-361.
    OpenUrlCrossRefPubMedWeb of Science
    1. King K.W.,
    2. Smiley P.C.,
    3. Baker B.J.,
    4. Fausey N.R.
    . 2008. Validation of paired watersheds for assessing conservation practices in the Upper Big Walnut Creek watershed, Ohio. Journal of Soil and Water Conservation 63(6):380-395, doi:10.2489/jswc.63.6.380.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. King K.W.,
    2. Smiley P.C. Jr..,
    3. Fausey N.R.
    . 2009. Hydrology of channelized and natural headwater streams. Hydrological Sciences Journal 54(5):929-948.
    OpenUrl
  26. ↵
    1. King K.W.,
    2. Williams M.R.,
    3. Fausey N.R.
    . 2015. Contributions of systematic tile drainage to watershed phosphorus transport. Journal of Environmental Quality 44:486-494.
    OpenUrlCrossRef
  27. ↵
    1. King K.W.,
    2. Williams M.R.,
    3. Fausey N.R.
    . 2016. Effect of crop type and season on nutrient leaching to tile drainage under a corn–soybean rotation. Journal of Soil and Water Conservation 71(1):56-68, doi:10.2489/jswc.71.1.56.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. Lee S.,
    2. Sadeghi A.M.,
    3. McCarty G.W.,
    4. Baffaut C.,
    5. Lohani S.,
    6. Duriancik L.F.,
    7. Thompson A.L.,
    8. Yeo I.,
    9. Wallace C.
    . 2018. Assessing the suitability of the Soil Vulnerability Index (SVI) classification scheme using the SWAT model. CATENA 167:1-12.
    OpenUrl
  29. ↵
    1. Lee S.,
    2. Yeo I.,
    3. Sadeghi A.M.,
    4. McCarty G.W.,
    5. Hively W.D.,
    6. Lang M.W.
    . 2016. Impacts of watershed characteristics and crop rotations on winter cover crop nitrate-nitrogen uptake capacity within agricultural watersheds in the Chesapeake Bay region. PLoS ONE 11(6):e0157637.
    OpenUrl
  30. ↵
    1. Lentz R.D.,
    2. Carter D.L.,
    3. Haye S.V.
    . 2018. Changes in groundwater quality and agriculture in forty years on the Twin Falls irrigation tract in southern Idaho. Journal of Soil and Water Conservation 73(2):107-119, doi:10.2489/jswc.73.2.107.
    OpenUrlAbstract/FREE Full Text
    1. Lizotte R.E.,
    2. Yasarer L.M.W.,
    3. Locke M.A.,
    4. Bingner R.L.,
    5. Knight S.S.
    . 2017. Lake nutrient responses to integrated conservation practices in an agricultural watershed. Journal of Environmental Quality 46(2):330-338.
    OpenUrlCrossRef
  31. ↵
    1. Lohani S.,
    2. Baffaut C.,
    3. Thompson A.L.,
    4. Aryal N.,
    5. Bingner R.L.,
    6. Bjorneberg D.L.,
    7. Bosch D.D.,
    8. Bryant R.B.,
    9. Buda A.,
    10. Dabney S.M.,
    11. Davis A.R.,
    12. Duriancik L.F.,
    13. James D.E.,
    14. King K.W.,
    15. Kleinman P.J.A.,
    16. Locke M.,
    17. McCarty G.W.,
    18. Pease L.A.,
    19. Reba M.L.,
    20. Smith D.R.,
    21. Tomer M.D.,
    22. Veith T.L.,
    23. Williams M.R.,
    24. Yasarer L.M.W.
    . 2020. Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group. Journal Soil and Water Conservation 75(1):12-27, doi:10.2498/jswc.75.1.12.
    OpenUrl
  32. ↵
    1. McCarty G.W.,
    2. McConnell L.L.,
    3. Hapeman C.J.,
    4. Sadeghi A.,
    5. Graff C.,
    6. Hively W.D.,
    7. Lang M.W.,
    8. Fisher T.R.,
    9. Jordan T.,
    10. Rice C.P.,
    11. Codling E.E.,
    12. Whitall D.,
    13. Lynn A.,
    14. Keppler J.,
    15. Fogel M.L.
    . 2008. Water quality and conservation practice effects in the Choptank River watershed. Journal of Soil and Water Conservation 63(6):461-474, doi:10.2489/jswc.63.6.461.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Pease L.A.,
    2. King K.W.,
    3. Williams M.R.,
    4. LaBarge G.A.,
    5. Duncan E.W.,
    6. Fausey N.R.
    . 2018. Phosphorus export from artificially drained fields across the Eastern Corn Belt. Journal of Great Lakes Research 44(1):43-53.
    OpenUrl
  34. ↵
    1. Reba M.L.,
    2. Aryal N.
    . 2018a. Agricultural Practice Monitoring and Evaluation, Year Three (2017) Annual Report. AR0311401-01 and AR031401-02. Jonesboro, AR: USDA Agricultural Research Service.
  35. ↵
    1. Reba M.L.,
    2. Aryal N.
    . 2018b. Agricultural Practice Monitoring and Evaluation, Year Four (2017) Annual Report. AR 1111301-01, AR1111301-02 and AR1111301-03. Jonesboro, AR: USDA Agricultural Research Service.
  36. ↵
    1. Saleh A.,
    2. Osei E.,
    3. Jaynes D.B.,
    4. Du B.,
    5. Arnold J.G.
    . 2007. Economic and environmental impacts of LSNT and cover crops for nitrate-nitrogen reduction in Walnut Creek watershed, Iowa, using FEM and enhanced SWAT models. Transactions of the ASABE 50(4):1251-1259.
    OpenUrl
  37. ↵
    1. Skaggs R.W.,
    2. Brevé M.A.,
    3. Gilliam J.W.
    . 1994. Hydrologic and water quality impacts of agricultural drainage. Critical Reviews in Environmental Science and Technology 24(1):1-32.
    OpenUrlGeoRef
  38. ↵
    1. Smith D.R.,
    2. King K.W.,
    3. Johnson L.,
    4. Francesconi W.,
    5. Richards P.,
    6. Baker D.,
    7. Sharpley A.N.
    . 2015. Surface runoff and tile drainage transport of phosphorus in the Midwestern United States. Journal of Environmental Quality 44(2):495-502.
    OpenUrlCrossRefPubMed
  39. ↵
    1. Smith D.R.,
    2. Livingston S.J.,
    3. Zuercher B.W.,
    4. Larose M.,
    5. Heathman G.C.,
    6. Huang C.
    . 2008. Nutrient losses from row crop agriculture in Indiana. Journal of Soil and Water Conservation 63(6):396-409, doi:10.2489/jswc.63.6.396.
    OpenUrlAbstract/FREE Full Text
  40. ↵
    1. Smith D.R.,
    2. Wilson R.S.,
    3. King K.W.,
    4. Zwonitzer M.,
    5. McGrath J.M.,
    6. Harmel R.D.,
    7. Haney R.L.,
    8. Johnson L.T.
    . 2018. Lake Erie, phosphorus, and microcystin: Is it really the farmer's fault? Journal of Soil and Water Conservation 73(1):48-57, doi:10.2489/jswc.73.1.48.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Soil Survey Staff
    . 2018. Web Soil Survey. Washington, DC: USDA Natural Resources Conservation Service. https://websoilsurvey.nrcs.usda.gov/.
  42. ↵
    1. Stamm C.,
    2. Flühler H.,
    3. Gächter R.,
    4. Leuenberger J.,
    5. Wunderli H.
    . 1998: Preferential transport of phosphorus in drained grassland soils. Journal of Environmental Quality 27(3):515-522.
    OpenUrlGeoRefWeb of Science
  43. ↵
    1. Strock J.S.,
    2. Hay C.,
    3. Helmers M.J.,
    4. Nelson K.A.,
    5. Sands G.R.,
    6. Skaggs R.W.,
    7. Douglas-Mankin K.R.
    . 2018. Advances in drainage: Selected works from the Tenth International Drainage Symposium. Transactions of the ASABE 61(1):161-168.
    OpenUrl
  44. ↵
    1. Thompson A.L.,
    2. Baffaut C.,
    3. Lohani S.,
    4. Duriancik L.F.,
    5. Norfleet M.L.,
    6. Ingram K.
    . 2020. Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils. Journal Soil and Water Conservation 75(1):1-11, doi:10.2489/jswc.75.1.1.
    OpenUrl
  45. ↵
    1. Tomer M.D.,
    2. James D.E.,
    3. Isenhart T.M.
    . 2003. Optimizing the placement of riparian practices in a watershed using terrain analysis. Journal of Soil and Water Conservation 58(4):198-206.
    OpenUrlAbstract/FREE Full Text
  46. ↵
    1. Tomer M.D.,
    2. Moorman T.B.,
    3. Rossi C.G.
    . 2008. Assessment of the Iowa River's South Fork watershed: Part 1. Water quality. Journal of Soil and Water Conservation 63(6):360-370, doi:10.2489/jswc.63.6.360.
    OpenUrlAbstract/FREE Full Text
  47. ↵
    1. Tomer M.D.,
    2. Wilson C.G.,
    3. Moorman T.B.,
    4. Cole K.J.,
    5. Heer D.,
    6. Isenhart T.M.
    . 2010. Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed. Journal of Environmental Quality 39:882-895.
    OpenUrlCrossRefPubMed
  48. ↵
    1. USDA ARS (Agricultural Research Service)
    . 2013. Science documentation: Revised Universal Soil Loss Equation Version 2. Washington, DC: USDA Agricultural Research Service.
  49. ↵
    1. USDA NASS (National Agricultural Statistics Service)
    . 2016. Cropland Data Layer. Washington, DC: USDA National Agricultural Statistics Service. https://nassgeodata.gmu.edu/CropScape/.
  50. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2012. Assessment of the effects of conservation practices on cultivated cropland in the Upper Mississippi River basin. Conservation Effects Assessment Project (CEAP) Final Report. Washington, DC: USDA Natural Resources Conservation Service.
  51. ↵
    1. USDA NRCS
    . 2018. CEAP (Conservation Effects Assessment Project) Soil Vulnerability Index for Cultivated Cropland (SVI-cc) User Guide, Version 1.12. Washington, DC: USDA Natural Resources Conservation Service.
  52. ↵
    1. Wang X.,
    2. Williams J.R.,
    3. Gassman P.W.,
    4. Baffaut C.,
    5. Izaurralde R.C.,
    6. Jeong J.,
    7. Kiniry J.R.
    . 2012. EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE 55(4):1447-1462.
    OpenUrlCrossRef
  53. ↵
    1. Williams M.R.,
    2. King K.W.,
    3. Fausey N.R.
    . 2015. Contribution of tile drains to basin discharge and nitrogen export in a headwater agricultural watershed. Agricultural Water Management 158(3):42-50.
    OpenUrl
  54. ↵
    1. Wischmeier W.H.,
    2. Smith D.D.
    . 1978. Predicting rainfall losses—A guide to conservation planning. Agriculture Handbook No. 537. Washington, DC: US Government Printing Office.
  55. ↵
    1. Wren D.G.,
    2. Taylor J.M.,
    3. Rigby J.R.,
    4. Locke M.A.,
    5. Yasarer L.M.W.
    . 2019. Short term sediment accumulation rates reveal seasonal time lags between sediment delivery and deposition in an oxbow lake. Agriculture, Ecosystems and Environment 281:92-99.
    OpenUrl
    1. Yasarer L.M.W.,
    2. Lohani S.,
    3. Bingner R.L.,
    4. Locke M.A.,
    5. Baffaut C.,
    6. Thompson A.L.
    . 2020. Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds. Journal Soil and Water Conservation 75(1):53-61, doi:10.2489/jswc.75.1.53.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (1)
Journal of Soil and Water Conservation
Vol. 75, Issue 1
January/February 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 2 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds
C. Baffaut, S. Lohani, A.L. Thompson, A.R. Davis, N. Aryal, D.L. Bjorneberg, R.L. Bingner, S.M. Dabney, L.F. Duriancik, D.E. James, K.W. King, S. Lee, G.W. McCarty, L.A. Pease, M.L. Reba, A.M. Sadeghi, M.D. Tomer, M.R. Williams, L.M.W. Yasarer
Journal of Soil and Water Conservation Jan 2020, 75 (1) 28-41; DOI: 10.2489/jswc.75.1.28

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds
C. Baffaut, S. Lohani, A.L. Thompson, A.R. Davis, N. Aryal, D.L. Bjorneberg, R.L. Bingner, S.M. Dabney, L.F. Duriancik, D.E. James, K.W. King, S. Lee, G.W. McCarty, L.A. Pease, M.L. Reba, A.M. Sadeghi, M.D. Tomer, M.R. Williams, L.M.W. Yasarer
Journal of Soil and Water Conservation Jan 2020, 75 (1) 28-41; DOI: 10.2489/jswc.75.1.28
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts
  • Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils
  • Assessing cultivated cropland inherent vulnerability to sediment and nutrient losses with the Soil Vulnerability Index
  • Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group
  • Google Scholar

More in this TOC Section

Research Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Special Research Section: Soil Vulnerability Index

  • Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group
  • Soil Vulnerability Index assessment as a tool to explain annual constituent loads in a nested watershed
  • Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds
Show more Special Research Section: Soil Vulnerability Index

Similar Articles

Keywords

  • Conservation Effects Assessment Project (CEAP)
  • erosion
  • leaching
  • nutrient loss
  • surface runoff
  • targeting

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society