Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

The effects of different burning intensities on soil properties during recovery stage of forests in subtropical China

Y. Zhan, F. Liu, X. Peng and G. Wang
Journal of Soil and Water Conservation March 2020, 75 (2) 166-176; DOI: https://doi.org/10.2489/jswc.75.2.166
Y. Zhan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Peng
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Alcasena F.J.,
    2. Ager A.A.,
    3. Salis M.,
    4. Day M.A.,
    5. Vega-Garcia C.
    . 2018. Optimizing prescribed fire allocation for managing fire risk in central Catalonia. Science of the Total Environment 621:872-885.
    OpenUrl
  2. ↵
    1. Almendros G.,
    2. Polo A.,
    3. Lobo M.,
    4. Ibáñez J.
    . 1984. De la materia organica del suelo II.–Transformaciones del humus por ignición. Behavioral Ecology and Sociobiology 21(2):145-160.
    OpenUrl
  3. ↵
    1. Andersson M.,
    2. Michelsen A.,
    3. Jensen M.,
    4. Kjøller A.
    . 2004. Tropical savannah woodland: Effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biology and Biochemistry 36(5):849-858.
    OpenUrl
  4. ↵
    1. Ando K.,
    2. Shinjo H.,
    3. Noro Y.,
    4. Takenaka S.,
    5. Miura R.,
    6. Sokotela S.B.,
    7. Funakawa S.
    . 2014. Short-term effects of fire intensity on soil organic matter and nutrient release after slash-and-burn in Eastern Province, Zambia. Soil Science and Plant Nutrition 60(2):173-182.
    OpenUrl
  5. ↵
    1. Araya S.N.,
    2. Fogel M.L.,
    3. Berhe A.A.
    . 2017. Thermal alteration of soil organic matter properties: A systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil 3(1):31-44.
    OpenUrl
  6. ↵
    1. Aref I.M.,
    2. El Atta H.A.,
    3. Al Ghamde M.,
    4. Rahman A.
    . 2011. Effect of forest fires on tree diversity and some soil properties. International Journal of Agriculture and Biology 13(5):659-664.
    OpenUrl
  7. ↵
    1. Badía D.,
    2. Martí C.
    . 2003. Plant ash and heat intensity effects on chemicaland physical properties of two contrasting soils. Arid Land Research and Management 17(1):23-41.
    OpenUrl
  8. ↵
    1. Bao S.
    2000. The method of the soil and agriculture chemical analysis. Beijing: China Agriculture Press.
  9. ↵
    1. Belda M.,
    2. Holtanová E.,
    3. Halenka T.,
    4. Kalvová J.
    . 2014. Climate classification revisited: From Köppen to Trewartha. Climate Research 59(1):1-13.
    OpenUrlCrossRef
  10. ↵
    1. Bisdom E.,
    2. Dekker L.,
    3. Schoute J.T.
    . 1993. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. In Soil Structure/Soil Biota Interrelationships, p. 105-118. The Netherlands: Elsevier.
  11. ↵
    1. Bremner J.
    1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science 55(1):11-33.
    OpenUrl
  12. ↵
    1. Chang Y.,
    2. He H.S.,
    3. Hu Y.,
    4. Bu R.,
    5. Li X.
    . 2008. Historic and current fire regimes in the Great Xing'an Mountains, northeastern China: Implications for long-term forest management. Forest Ecology and Management 254(3):445-453.
    OpenUrl
  13. ↵
    1. Chen S.,
    2. Peng S.,
    3. Chen B.,
    4. Chen D.,
    5. Cheng J.
    . 2010. Effects of fire disturbance on the soil physical and chemical properties and vegetation of Pinus massoniana forest in south subtropical area. Acta Ecologica Sinica 30(3):184-189.
    OpenUrl
  14. ↵
    1. DeBano L.F.
    1977. Fire's effect on physical and chemical properties of chaparral soils. In Proceedings of the Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. US Forest Service General Technical Report, p. 65-74.
  15. ↵
    1. Harvey A.E.,
    2. Neuenschwander L.F.
    1. DeBano L.F.
    1991. The effect of fire on soil properties. In Proceedings-Management and Productivity of Western-Montane Forest Soils, eds. Harvey A.E., Neuenschwander L.F., 1990 April 10-12, Boise, Idaho, p. 151-156. General Technical Report INT-280. Ogden, UT: USDA Forest Service, Intermountain Research Station.
  16. ↵
    1. DeBano L.F.,
    2. Neary D.G.,
    3. Ffolliott P.F.
    . 1998. Fire's Effects on Ecosystems. New York: John Wiley & Sons.
  17. ↵
    1. Díaz-Delgado R.,
    2. Pons X.
    . 2001. Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: Analysis of vegetation recovery after fire. Forest Ecology and Management 147(1):67-74.
    OpenUrl
  18. ↵
    1. Evrendilek F.,
    2. Celik I.,
    3. Kilic S.
    . 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments 59:743-752.
    OpenUrl
  19. ↵
    1. Fang Y.
    2008. Study on the response of the species diversity of Pinus massoniana plantation to fire disturbance. Journal of Anhui Agricultural Science 36(31):13629-13631.
    OpenUrl
    1. Fischer G.,
    2. Nachtergaele F.,
    3. Prieler S.,
    4. van Velthuizen H.T.,
    5. Verelst L.,
    6. Wiberg D.
    . 2008. Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). Laxenburg, Austria, and Rome, Italy: International Institute for Applied Systems Analysis and Food and Agriculture Orgaznization of the United Nations.
  20. ↵
    1. Fonseca F.,
    2. de Figueiredo T.,
    3. Nogueira C.,
    4. Queirós A.
    . 2017. Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma 307:172-180.
    OpenUrl
  21. ↵
    1. Fox D.,
    2. Darboux F.,
    3. Carrega P.
    . 2007. Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes 21(17):2377-2384.
    OpenUrlGeoRef
  22. ↵
    1. Gao J.,
    2. Wang E.,
    3. Ren W.,
    4. Liu X.,
    5. Chen Y.,
    6. Shi Y.,
    7. Yang Y.
    . 2017. Effects of simulated climate change on soil microbial biomass and enzyme activities in young Chinese fir (Cunninghamia lanceolata) in subtropical China. Acta Ecologica Sinica 37(4):272-278.
    OpenUrl
  23. ↵
    1. Goebel M.O.,
    2. Bachmann J.,
    3. Reichstein M.,
    4. Janssens I.A.,
    5. Guggenberger G.
    . 2011. Soil water repellency and its implications for organic matter decomposition–is there a link to extreme climatic events? Global Change Biology 17(8):2640-2656.
    OpenUrl
  24. ↵
    1. Schulte A.,
    2. Schöne D.H.F.
    1. Goldammer J.G.,
    2. Seibert B.,
    3. Schindele W.
    . 1996. Fire in dipterocarp forests. In Dipterocarp Forest Ecosystems: Towards sustainable management, eds. Schulte A., Schöne D.H.F., 155-185. Singapore and River Edge, NJ: World Scientific.
  25. ↵
    1. Granged A.J.,
    2. Zavala L.M.,
    3. Jordán A.,
    4. Bárcenas-Moreno G.
    . 2011. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma 164(1-2):85-94.
    OpenUrlGeoRef
  26. ↵
    1. Hansen M.C.,
    2. Potapov P.V.,
    3. Moore R.,
    4. Hancher M.,
    5. Turubanova S.,
    6. Tyukavina A.,
    7. Thau D.,
    8. Stehman S.,
    9. Goetz S.,
    10. Loveland T.R.
    . 2013. High-resolution global maps of 21st-century forest cover change. Science 342(6160):850-853.
    OpenUrlAbstract/FREE Full Text
  27. ↵
    1. Hewelke E.,
    2. Szatyłowicz J.,
    3. Gnatowski T.,
    4. Oleszczuk R.
    . 2016. Effects of soil water repellency on moisture patterns in a degraded sapric histosol. Land Degradation & Development 27(4):955-964.
    OpenUrl
  28. ↵
    1. Heydari M.,
    2. Rostamy A.,
    3. Najafi F.,
    4. Dey D.
    . 2017. Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran. Journal of Forestry Research 28(1):95-104.
    OpenUrl
  29. ↵
    1. Hubbert K.R.,
    2. Oriol V.
    . 2005. Temporal fluctuations in soil water repellency following wildfire in chaparral steeplands, southern California. International Journal of Wildland Fire 14:439-447.
    OpenUrl
  30. ↵
    1. James J.A.,
    2. Kern C.C.,
    3. Miesel J.R.
    . 2018. Legacy effects of prescribed fire season and frequency on soil properties in a Pinus resinosa forest in northern Minnesota. Forest Ecology and Management 415:47-57.
    OpenUrl
    1. Jiménez-Morillo N.T.,
    2. González-Pérez J.A.,
    3. Jordán A.,
    4. Zavala L.M.,
    5. de la Rosa J.M.,
    6. Jiménez-González M.A.,
    7. González-Vila F.J.
    . 2016. Organic matter fractions controlling soil water repellency in sandy soils from the Doñana National Park (Southwestern Spain). Land Degradation & Development 27(5):1413-1423.
    OpenUrl
  31. ↵
    1. Kakaire J.,
    2. Makokha G.L.,
    3. Mwanjalolo M.,
    4. Mensah A.K.,
    5. Menya E.
    . 2015. Effects of mulching on soil hydro-physical properties in Kibaale Sub-catchment, South Central Uganda. Applied Ecology and Environmental Sciences 3(5):127-135.
    OpenUrl
  32. ↵
    1. Kennard D.K.,
    2. Gholz H.
    . 2001. Effects of high-and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant and Soil 234(1):119-129.
    OpenUrlCrossRef
  33. ↵
    1. Kutiel P.,
    2. Inbar M.
    . 1993. Fire impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 20(1-2):129-139.
    OpenUrlGeoRef
  34. ↵
    1. Liu C.,
    2. Evett J.B.
    . 1984. Soil Properties: Testing, Measurement and Evaluation. Englewood Cliffs, NJ: Prentice-Hall, Inc.
  35. ↵
    1. Mataix-Solera J.,
    2. Arcenegui V.,
    3. Guerrero C.,
    4. Mayoral A.M.,
    5. Morales J.,
    6. González J.,
    7. García-Orenes F.,
    8. Gómez I.
    . 2007. Water repellency under different plant species in a calcareous forest soil in a semiarid Mediterranean environment. Hydrological Processes 21(17):2300-2309.
    OpenUrlGeoRef
  36. ↵
    1. Mishra A.K.,
    2. Behera S.K.,
    3. Singh K.,
    4. Mishra R.,
    5. Chaudhary L.,
    6. Singh B.
    . 2013. Effect of abiotic factors on understory community structures in moist deciduous forests of northern India. Forest Science and Practice 15(4):261-273.
    OpenUrl
    1. Nachtergaele F.,
    2. van Velthuizen F.,
    3. Verelst L.
    . 2008. Harmonized World Soil Database. Rome: Food and Agriculture Organization of the United Nations.
  37. ↵
    1. Neary D.G.,
    2. Klopatek C.C.,
    3. DeBano L.F.,
    4. Ffolliott P.F.
    . 1999. Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management 122(1-2):51-71.
    OpenUrlCrossRefWeb of Science
  38. ↵
    1. Ravi S.,
    2. D'Odorico P.,
    3. Zobeck T.M.,
    4. Over T.M.,
    5. Collins S.L.
    . 2007. Feedbacks between fires and wind erosion in heterogeneous arid lands. Journal of Geophysical Research: Biogeosciences 112(G4).
  39. ↵
    1. Ryan K.C.
    2002. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36(1):13-39.
    OpenUrlWeb of Science
  40. ↵
    1. Golley F.B.,
    2. Medina E.
    1. San José J.,
    2. Medina E.
    . 1975. Effect of fire on organic matter production and water balance in a tropical savanna. In Tropical Ecological Systems, eds. Golley F.B., Medina E., 251-264. Berlin: Springer-Verlag.
  41. ↵
    1. Seymour G.,
    2. Tecle A.
    . 2004. Impact of slash pile size and burning on ponderosa pine forest soil physical characteristics. Journal of the Arizona-Nevada Academy of Science 37(2):74-83.
    OpenUrl
  42. ↵
    1. Snyman H.
    2003. Short-term response of rangeland following an unplanned fire in terms of soil characteristics in a semi-arid climate of South Africa. Journal of arid Environments 55(1):160-180.
    OpenUrl
  43. ↵
    1. Sun L.,
    2. Zhao J.,
    3. Hu H.
    . 2011. Effect of moderate fire disturbance on soil physical and chemical properties of Betula platyphylla-Larix gmelinii mixed forest. Scientia Silvae Sinicae 47(2):103-110.
    OpenUrl
  44. ↵
    1. Tanveera A.,
    2. Kanth T.A.,
    3. Tali P.A.,
    4. Naikoo M.
    . 2016. Relation of soil bulk density with texture, total organic matter content and porosity in the soils of Kandi area of Kashmir Valley, India. International Research Journal of Earth Sciences 4:1-6.
    OpenUrl
  45. ↵
    1. Úbeda X.,
    2. Lorca M.,
    3. Outeiro L.R.,
    4. Bernia S.,
    5. Castellnou M.
    . 2005. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). International Journal of Wildland Fire 14(4):379-384.
    OpenUrlCrossRefWeb of Science
  46. ↵
    1. Vargas R.,
    2. Collins S.L.,
    3. Thomey M.L.,
    4. Johnson J.E.,
    5. Brown R.F.,
    6. Natvig D.O.,
    7. Friggens M.T.
    . 2012. Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology 18(4):1401-1411.
    OpenUrl
  47. ↵
    1. Wang X.,
    2. Gong Z.
    . 1998. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geoderma 81(3-4):339-355.
    OpenUrlGeoRef
  48. ↵
    1. Walkley A.,
    2. Black I.A.
    . 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1):29-38.
    OpenUrlCrossRef
  49. ↵
    1. White J.D.,
    2. Ryan K.C.,
    3. Key C.C.,
    4. Running S.W.
    . 1996. Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire 6(3):125-136.
    OpenUrl
  50. ↵
    1. Wieting C.,
    2. Ebel B.A.,
    3. Singha K.
    . 2017. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory. Journal of Hydrology: Regional Studies 13:43-57.
    OpenUrl
  51. ↵
    1. WRB (World Reference Base)
    . 2015. World reference base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report 106. Rome: Food and Agriculture Organization of the United Nations.
  52. ↵
    1. Xue L.,
    2. Li Q.,
    3. Chen H.
    . 2014. Effects of a wildfire on selected physical, chemical and biochemical soil properties in a Pinus massoniana forest in South China. Forests 5(12):2947-2966.
    OpenUrl
  53. ↵
    1. Yuan G.,
    2. Lavkulich L.
    . 1995. Colorimetric determination of phosphorus in citrate-bicarbonate-dithionite extracts of soils. Communications in Soil Science and Plant Analysis 26(11-12):1979-1988.
    OpenUrl
  54. ↵
    1. Zhang Y.,
    2. Sun M.,
    3. Liu T.
    . 2012. Effect of forest fire on soil physical and chemical properties of typical forests in Daxing'an Mountains. Journal of Northeast Forestry University 40(6):41-107.
    OpenUrl
  55. ↵
    1. Zheng Z.,
    2. Mamuti M.,
    3. Liu H.,
    4. Shu Y.,
    5. Hu S.,
    6. Wang X.,
    7. Li B.,
    8. Lin L.,
    9. Li X.
    . 2017. Effects of nutrient additions on litter decomposition regulated by phosphorus-induced changes in litter chemistry in a subtropical forest, China. Forest Ecology and Management 400:123-128.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (2)
Journal of Soil and Water Conservation
Vol. 75, Issue 2
March/April 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
The effects of different burning intensities on soil properties during recovery stage of forests in subtropical China
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
The effects of different burning intensities on soil properties during recovery stage of forests in subtropical China
Y. Zhan, F. Liu, X. Peng, G. Wang
Journal of Soil and Water Conservation Mar 2020, 75 (2) 166-176; DOI: 10.2489/jswc.75.2.166

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
The effects of different burning intensities on soil properties during recovery stage of forests in subtropical China
Y. Zhan, F. Liu, X. Peng, G. Wang
Journal of Soil and Water Conservation Mar 2020, 75 (2) 166-176; DOI: 10.2489/jswc.75.2.166
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Capture of surface water runoff for irrigation of corn in western Illinois: Implications for nutrient loss reduction
Show more Research Section

Similar Articles

Keywords

  • fire intensity
  • prescribed burning
  • soil properties
  • soil sample
  • subtropical forest

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society