Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Characterizing transport of natural and anthropogenic constituents in a long-term agricultural watershed in the northeastern United States

T.L. Veith, H.E. Preisendanz and K.R. Elkin
Journal of Soil and Water Conservation May 2020, 75 (3) 319-329; DOI: https://doi.org/10.2489/jswc.75.3.319
T.L. Veith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.E. Preisendanz
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.R. Elkin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Basu N.B.,
    2. Destouni G.,
    3. Jawitz J.W.,
    4. Thompson S.E.,
    5. Loukinova N.V.,
    6. Darracq A.,
    7. Zanardo S.,
    8. Yaeger M.,
    9. Sivapalan M.,
    10. Rinaldo A.,
    11. Rao P.S.C.
    . 2010. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters 37:L23404.
    OpenUrlCrossRef
  2. ↵
    1. Basu N.B.,
    2. Thompson S.E.,
    3. P.S.C. Rao
    . 2011. Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses. Water Resources Research 47:W00J15.
    OpenUrl
  3. ↵
    1. Bryant R.B.,
    2. Veith T.L.,
    3. Feyereisen G.W.,
    4. Buda A.R.,
    5. Church C.D.,
    6. Folmar G.J.,
    7. Schmidt J.P.,
    8. Dell C.J.,
    9. Kleinman P.J.A.
    . 2011. USDA-ARS Mahantango Creek watershed, Pennsylvania, United States: Physiography and history. Water Resources Research 47: W08701, doi:10.1029/2010WR010056.
    OpenUrlCrossRef
  4. ↵
    1. Buda A.
    2013. Surface-runoff generation and forms of overland flow. In Treatise on Geomorphology, Volume 7, 73-84. Amsterdam: Elsevier Inc. https://doi.org/10.1016/B978-0-12-374739-6.00151-2.
    OpenUrl
  5. ↵
    1. Buda A.R.,
    2. Feyereisen G.W.,
    3. Veith T.L.,
    4. Folmar G.J.,
    5. Bryant R.B.,
    6. Church C.D.,
    7. J.P. Schmidt J.P.,
    8. Dell C.J.,
    9. Kleinman P.J.A.
    . 2011. USDA-ARS Mahantango Creek watershed, Pennsylvania, United States: Long-term stream discharge database. Water Resources Research 47:W08703, doi:10.1029/2010WR010059.
    OpenUrlCrossRef
  6. ↵
    1. Buda A.R.,
    2. Kleinman P.J.,
    3. Srinivasan M.S.,
    4. Bryant R.B.,
    5. Feyereisen G.W.
    . 2009. Factors influencing surface runoff generation from two agricultural hillslopes in central Pennsylvania. Hydrologic Processes 23:1295-1312, doi:10.1002/hyp.7237.
    OpenUrlCrossRef
  7. ↵
    1. Church C.D.,
    2. Veith T.L.,
    3. Folmar G.F.,
    4. Buda A.R.,
    5. Feyereisen G.W.,
    6. Bryant R.B.,
    7. Schmidt J.P.,
    8. Dell C.J.,
    9. Kleinman P.J.A.
    . 2011. USDA-ARS Mahantango Creek watershed, Pennsylvania, United States: Long-term water quality database. Water Resources Research W08704, doi:10.1029/2010WR010060.
    OpenUrlCrossRef
  8. ↵
    1. Dodd R.J.,
    2. Sharpley A.N.
    . 2016. Conservation practice effectiveness and adoption: Unintended consequences and implications for sustainable phosphorus management. Nutrient Cycling in Agroecosystems 104:373-392.
    OpenUrl
  9. ↵
    1. Duffy C.J.,
    2. Cusumano J.
    . 1998. A low dimensional model for concentration-discharge dynamics in groundwater stream systems. Water Resources Research 34:2235-2247.
    OpenUrlGeoRef
  10. ↵
    1. Elkin K.R.,
    2. Veith T.L.,
    3. Lu H.,
    4. Goslee S.C.,
    5. Buda A.R.,
    6. Collick A.S.,
    7. Folmar G.J.,
    8. Kleinman P.J.A.,
    9. Bryant R.B.
    . 2016. Declining atmospheric sulfate deposition in an agricultural watershed in central Pennsylvania, USA. Agricultural and Environmental Letters 1:160039, doi:10.2134/ael2016.09.0039.
    OpenUrlCrossRef
  11. ↵
    1. Gall H.E.,
    2. Jafvert C.T.,
    3. Jenkinson B.
    . 2010. Integrating hydrograph modeling with real-time monitoring to generate hydrograph-specific sampling schemes. Journal of Hydrology 393:331-340.
    OpenUrlGeoRef
  12. ↵
    1. Gall H.E.,
    2. Park J.,
    3. Harman C.J.,
    4. Jawitz J.W.,
    5. Rao P.S.C.
    . 2013. Landscape filtering of hydrologic and biogeochemical responses in managed catchments. Landscape Ecology 28:651-664.
    OpenUrl
  13. ↵
    1. Gall H.E.,
    2. Sassman S.A.,
    3. Jenkinson B.,
    4. Lee L.S.,
    5. Jafvert C.T.
    . 2015. Comparison of export dynamics of nutrients and animal-borne estrogens from a tie-drained Midwestern agroecosystem. Water Research 72:162-173.
    OpenUrl
  14. ↵
    1. Gburek W.J.,
    2. Folmar G.J.
    . 1999. A groundwater recharge field study: Site characterization and initial results. Hydrologic Processes 13:2813-2831, doi:10.1002/(SICI)1099-1085(19991215)13:17<2813::AID-HYP901>3.0.CO;2-6.
    OpenUrlCrossRef
  15. ↵
    1. Godsey S.E.,
    2. Kirchner J.W.,
    3. Clow D.W.
    . 2009. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes 23:1844-1864.
    OpenUrlCrossRefGeoRefWeb of Science
  16. ↵
    1. Guan K.,
    2. Thompson S.E.,
    3. Harman C.J.,
    4. Basu N.B.,
    5. Rao P.S.C.,
    6. Sivapalan M.,
    7. Packman A.I.,
    8. Kalita P.K.
    . 2011. Spatiotemporal scaling of hydrological and agrochemical export dynamics in a tile-drained midwestern watershed. Water Resources Research 47:W00J02.
    OpenUrl
  17. ↵
    1. Haggard B.E.,
    2. Soerens T.S.,
    3. Green W.R.,
    4. Richards R.P.
    . 2003. Using regression methods to estimate stream phosphorus loads at the Illinois River, Arkansas. Applied Engineering in Agriculture 19:187-194.
    OpenUrlWeb of Science
  18. ↵
    1. Halliday S.J.,
    2. Wade A.J.,
    3. Skeffington R.A.,
    4. Neal C.,
    5. Reynolds B.,
    6. Rowland P.,
    7. Neal M.,
    8. Norris D.
    . 2012. An analysis of long-term trends, seasonality and short-term dynamics in water quality from Plynlimon, Wales. Science of the Total Environment 434:186-200.
    OpenUrlPubMed
  19. ↵
    1. Harmel R.D.,
    2. King K.W.,
    3. Slade R.M.
    . 2003. Automated storm water sampling on small watersheds. Applied Engineering in Agriculture 19(6):667-674.
    OpenUrlWeb of Science
  20. ↵
    1. Haygarth P.M.,
    2. Jarvie H.P.,
    3. Powers S.M.,
    4. Sharpley A.N.,
    5. Elser J.J.,
    6. Shen J.B.,
    7. Peterson H.M.,
    8. Chan N.I.,
    9. Howden N.J.K.,
    10. Burt T.,
    11. Worrall F.,
    12. Zhang F.S.,
    13. Liu X.J.
    . 2014. Sustainable phosphorus management and the need for a long-term perspective: The legacy hypothesis. Environmental Science and Technology 48:8417-8419.
    OpenUrlCrossRefPubMed
  21. ↵
    1. Haygarth P.,
    2. Turner B.L.,
    3. Fraser A.,
    4. Jarvis S.,
    5. Harrod T.,
    6. Nash D.,
    7. Halliwell D.,
    8. Page T.,
    9. Beven K.
    . 2004. Temporal variability in phosphorus transfers: Classifying concentration-discharge event dynamics. Hydrology and Earth Systems Science 8:88-97.
    OpenUrl
  22. ↵
    1. Jawitz J.W.,
    2. Mitchell M.
    . 2011. Temporal inequality in catchment discharge and solute export. Water Resources Research 47:W00J14.
    OpenUrl
  23. ↵
    1. Johnson N.B.,
    2. Likens G.E.,
    3. Bormann F.H.,
    4. Fisher D.W.,
    5. Pierce R.S.
    . 1969. A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Water Resources Research 5:1353-1363.
    OpenUrlWeb of Science
  24. ↵
    1. King K.W.,
    2. Harmel R.D.
    . 2004. Comparison of time-based sampling strategies to determine nitrogen loading in plot-scale runoff. Transactions of the ASABE 47(5):1457-1463.
    OpenUrl
  25. ↵
    1. King K.W.,
    2. Harmel R.D.,
    3. Fausey N.R.
    . 2005. Development and sensitivity of a method to select time- and flow-paced storm event sampling intervals for headwater streams. Journal of Soil and Water Conservation 60(6):323-331.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Liu J.,
    2. Veith T.L.,
    3. Collick A.S.,
    4. Kleinman P.J.A.,
    5. Beegle D.B.,
    6. Bryant R.B.
    . 2017. Seasonal manure application timing and storage effects on field- and watershed-level phosphorus losses. Journal of Environmental Quality 46:1403-1412.
    OpenUrl
  27. ↵
    1. Mańczak H.,
    2. Florczyk H.
    . 1971. Interpretation of results from the studies of pollution of surface flowing waters. Water Research 5:575-584.
    OpenUrl
  28. ↵
    1. Masaki Y.,
    2. Hanasaki N.,
    3. Takahashi K.,
    4. Hijioka Y.
    . 2014. Global-scale analysis on future changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resources Research 50:4054-4078.
    OpenUrl
  29. ↵
    1. Miller M.D.,
    2. Gall H.E.,
    3. Buda A.R.,
    4. Saporito L.S.,
    5. Veith T.L.,
    6. White C.M.,
    7. Williams C.F.,
    8. Brasier K.J.,
    9. Kleinman P.J.A.,
    10. Watson J.E.
    . 2019. Load-discharge relationships reveal the efficacy of manure application practices on phosphorus and total solids losses from agricultural fields. Agriculture, Ecosystems and Environment 272:19-28.
    OpenUrl
  30. ↵
    1. Musolff A.,
    2. Schmidt C.,
    3. Selle B.,
    4. Fleckenstein J.H.
    . 2015. Catchment controls on solute export. Advances in Water Resources 86:133-146.
    OpenUrl
  31. ↵
    1. NOAA (National Oceanic and Atmospheric Administration)
    2. National Centers for Environmental Information
    . 2019. National temperature and precipitation maps. Silver Spring, MD: National Oceanic and Atmospheric Administration. https://www.ncdc.noaa.gov/temp-and-precip/us-maps/.
  32. ↵
    1. Opalinski N.,
    2. Schultz D.,
    3. Gall H.E.,
    4. Royer M.
    . 2016. Development of a decision-making framework for BMP design to reduce loads during “hot moments”. ASABE Paper No. 2456929. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  33. ↵
    1. Robertson D.,
    2. Roerish E.
    . 1999. Influence of various water quality sampling strategies on load estimates for small streams. Water Resources Research 35:3747-3759.
    OpenUrlCrossRefGeoRef
  34. ↵
    1. Schnabel R.R.,
    2. Urban J.B.,
    3. Gburek W.J.
    . 1993. Hydrologic controls in nitrate, sulfate, and chloride concentrations. Journal of Environmental Quality 22:589-596, doi:10.2134/jeq1993.00472425002200030025x.
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Swistock B.
    2015. Interpreting drinking water tests for dairy cows. University Park, PA: PennState Extension. https://extension.psu.edu/interpreting-drinking-water-tests-for-dairy-cows.
  36. ↵
    1. Thompson S.E.,
    2. Basu N.B.,
    3. Lascurain J. Jr..,
    4. Aubeneau A.,
    5. Rao P.S.C.
    . 2011. Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research 47:W00J05.
    OpenUrl
  37. ↵
    1. Ullrich A.,
    2. Volk M.
    . 2010. Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and validation. Environmental Monitoring and Assessment 171:513-527.
    OpenUrlCrossRefPubMed
  38. ↵
    1. USDA ARS (Agricultural Research Service)
    . 2019. The Long-Term Agroecosystem Research (LTAR) Network. Washington, DC: USDA Agricultural Research Service. https://www.ars.usda.gov/natural-resources-and-sustainable-agricultural-systems/water-availability-and-watershed-management/docs/long-term-agroecosystem-research-ltar-network/.
    1. USDA NRCS (Natural Resources Conservation Service
    . 2019. Conservation Effects Assessment Project (CEAP). Washington, DC: USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/nra/ceap/.
  39. ↵
    1. USEPA (US Environmental Protection Agency)
    . 2019. National primary drinking water regulations. Washington, DC: US Environmental Protection Agency. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.
  40. ↵
    1. Veith T.L.,
    2. Richards J.E.,
    3. Goslee S.C.,
    4. Collick A.S.,
    5. Bryant R.B.,
    6. Miller D.A.,
    7. Bills B.,
    8. Buda A.R.,
    9. Sebring R.L.,
    10. Kleinman P.J.A.
    . 2015. Navigating spatial and temporal complexity in developing a long-term land use database for an agricultural watershed. Journal of Soil and Water Conservation 70(5):288-296, doi:10.2489/jswc.70.5.288.
    OpenUrlAbstract/FREE Full Text
  41. ↵
    1. Vogel R.M.,
    2. Rudolph B.E.,
    3. Hooper R.P.
    . 2005. Probabilistic behavior of water-quality loads. Journal of Environmental Engineering 131:1081-1089.
    OpenUrl
  42. ↵
    1. Zhang Q.
    2018. Synthesis of nutrient and sediment export patterns in the Chesapeake Bay watershed: Complex and non-stationary concentration-discharge relationships. Science of the Total Environment 618:1268-1283, doi:10.1016/j.scitotenv.2017.09.221.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (3)
Journal of Soil and Water Conservation
Vol. 75, Issue 3
May/June 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Characterizing transport of natural and anthropogenic constituents in a long-term agricultural watershed in the northeastern United States
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Characterizing transport of natural and anthropogenic constituents in a long-term agricultural watershed in the northeastern United States
T.L. Veith, H.E. Preisendanz, K.R. Elkin
Journal of Soil and Water Conservation May 2020, 75 (3) 319-329; DOI: 10.2489/jswc.75.3.319

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Characterizing transport of natural and anthropogenic constituents in a long-term agricultural watershed in the northeastern United States
T.L. Veith, H.E. Preisendanz, K.R. Elkin
Journal of Soil and Water Conservation May 2020, 75 (3) 319-329; DOI: 10.2489/jswc.75.3.319
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Similar Articles

Keywords

  • agriculture
  • CEAP
  • concentration-discharge
  • geogenic constituents
  • legacy nutrients
  • surface water

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society