Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling

W.D. Hively, S. Lee, A.M. Sadeghi, G.W. McCarty, B.T. Lamb, A. Soroka, J. Keppler, I.-Y. Yeo and G.E. Moglen
Journal of Soil and Water Conservation May 2020, 75 (3) 362-375; DOI: https://doi.org/10.2489/jswc.75.3.362
W.D. Hively
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A.M. Sadeghi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.W. McCarty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.T. Lamb
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Soroka
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Keppler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I.-Y. Yeo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.E. Moglen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Arnold J.G.,
    2. Srinivasan R.,
    3. Muttiah R.S.,
    4. Williams J.R.
    . 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association 34(1):91-101.
    OpenUrlGeoRef
  2. ↵
    1. Ator S.W.,
    2. Denver J.M.
    . 2012. Estimating contributions of nitrogen and herbicides from groundwater to headwater streams, Northern Atlantic Coastal Plain, USA. Journal of the American Water Resources Association 48(6):1075-1090, https://doi.org/10.1111/j.1752-1688.2012.00672.x.
    OpenUrlCrossRefGeoRef
  3. ↵
    1. Denver J.M.,
    2. Ator S.W.,
    3. Lang M.W.,
    4. Fisher T.R.,
    5. Gustafson A.B.,
    6. Fox R.,
    7. Clune J.W.,
    8. McCarty G.W.
    . 2014. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States. Journal of Soil and Water Conservation 69(1):1-16, doi:10.2489/jswc.69.1.1.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Fenstermacher D.E.,
    2. Rabenhorst M.C.,
    3. Lang M.W.,
    4. McCarty G.W.,
    5. Needelman B.A.
    . 2014. Distribution, morphometry, and land use of Delmarva Bays. Wetlands (2014)34:1219-1228.
    OpenUrl
  5. ↵
    1. Gorelick N.,
    2. Hancher M.,
    3. Dixon M.,
    4. Ilyushchenko S.,
    5. Thau D.,
    6. Moore R.
    . 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202:1-27, https://doi.org/10.1016/j.rse.2017.06.031.
    OpenUrl
  6. ↵
    1. Hively W.D.,
    2. Lang M.,
    3. McCarty G.W.,
    4. Keppler J.,
    5. Sadeghi A.,
    6. McConnell L.L.
    . 2009. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. Journal of Soil and Water Conservation 64(5):303-313, https://doi.org/10.2489/jswc.64.5.303.
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Hively W.D.,
    2. Hapeman C.J.,
    3. McConnell L.L.,
    4. Fisher T.R.,
    5. Rice C.P.,
    6. McCarty G.W.,
    7. Sadeghi A.M.,
    8. Whitall D.R.,
    9. Downey P.M.,
    10. Niño de Guzmán G.T.,
    11. Bialek-Kalinski K.,
    12. Lang M.W.,
    13. Gustafson A.B.,
    14. Sutton A.J.,
    15. Sefton K.A.,
    16. Harman Fetcho J.A.
    . 2011. Relating nutrient and herbicide fate with landscape features and characteristics of 15 sub-watersheds in the Choptank River watershed. Science of the Total Environment 409(19):3866-3878, https://doi.org/10.1016/j.scitotenv.2011.05.024.
    OpenUrlCrossRefPubMed
  8. ↵
    1. Hively W.D.,
    2. Duiker S.W.,
    3. McCarty G.W.,
    4. Prabhakara K.
    . 2015. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. Journal of Soil and Water Conservation 70(6):340-352, https://doi.org/10.2489/jswc70.6.340.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Hively W.D.,
    2. Lamb B.,
    3. Daughtry C.S.,
    4. McCarty G.W.,
    5. Quemada M.
    . 2018. Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices. Remote Sensing 10(10):1657, https://doi.org/10.3390/rs10101657.
    OpenUrl
  10. ↵
    1. Hively W.D.,
    2. Shermeyer J.,
    3. Lamb B.T.,
    4. Daughtry C.S.,
    5. Quemada M.
    . 2019. Mapping crop residue by combining Landsat and Worldview 3 satellite imagery. Remote Sensing 11(16):1857, https://doi.org/10.3390/rs11161857.
    OpenUrl
  11. ↵
    1. Huang C.,
    2. Peng Y.,
    3. Lang M.,
    4. Yeo I.-Y.,
    5. McCarty G.
    . 2014. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment 141:231-242, http://doi.org/10.1109/JSTARS.2013.2265191.
    OpenUrl
  12. ↵
    1. Hunt E.R.,
    2. Hively W.D.,
    3. Fujikawa S.J.,
    4. Linden D.S.,
    5. Daughtry C.S.T.,
    6. McCarty G.W.
    . 2010. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing 2(1):290-305, http://doi.org/10.3390/rs2010290.
    OpenUrlCrossRef
  13. ↵
    1. Hunt E.R.,
    2. Hively W.D.,
    3. McCarty G.W.,
    4. Daughtry C.S.T.,
    5. Forrestal P.J.,
    6. Kratochvil R.J.,
    7. Carr J.L.,
    8. Allen N.F.,
    9. Fox-Rabinovitz J.R.,
    10. Miller C.D.
    . 2011. NIR-green-blue high-resolution digital images for assessment of winter cover crop biomass. GIScience and Remote Sensing 48:86-98, https://doi.org/10.2747/1548-1603.48.1.86.
    OpenUrlCrossRef
  14. ↵
    1. Hunt P.,
    2. Miller J.,
    3. Ducey T.,
    4. Lang M.W.,
    5. Szogi A.,
    6. McCarty G.W.
    . 2014. Denitrification in natural, restored and converted wetlands of the Delmarva Region of the US. Ecological Engineering 71:438-447.
    OpenUrl
  15. ↵
    1. Jones N.,
    2. Evenson G.R.,
    3. McLaughlin D.,
    4. Vanderhoff M.K.,
    5. Lang M.W.,
    6. McCarty G.W.,
    7. Golden H.E.,
    8. Lane C.R.,
    9. Alexander L.
    . 2018. Estimating restorable wetland water storage at landscape scales. Hydrological Processes 32(2):305-313, https://doi.org/10.1002/hyp.11405.
    OpenUrl
  16. ↵
    1. Lang M.,
    2. McDonough O.,
    3. McCarty G.W.,
    4. Oesterling R.,
    5. Wilen B.
    . 2012a. Enhanced detection of wetland-stream connectivity using LiDAR. Wetlands 32:461-473.
    OpenUrlCrossRef
  17. ↵
    1. Lang M.,
    2. McCarty G.W.,
    3. Oesterling R.,
    4. Yeo I.-Y.
    . 2012b. Topographic metrics for improved mapping of forested wetlands. Wetlands 33:141-155, doi:10.1007/s13157-012-0359-8.
    OpenUrlCrossRef
  18. ↵
    1. Lee S.,
    2. Yeo I.-Y.,
    3. Sadeghi A.M.,
    4. McCarty G.W.,
    5. Hively W.D.,
    6. Lang M.W.
    . 2016. Impacts of watershed characteristics and crop rotations on winter cover crop nitrate-nitrogen uptake capacity within agricultural watersheds in the Chesapeake Bay Region. PLOS One 11(6):e0157637, https://doi.org/10.1371/journal.pone.0157637.
    OpenUrl
  19. ↵
    1. Lee S.,
    2. Yeo I.-Y.,
    3. Lang M.W.,
    4. McCarty G.W.,
    5. Sadeghi A.M.,
    6. Sharifi A.S.,
    7. Jin H.,
    8. Liu Y.
    . 2017a. Improving the catchment scale wetland modeling using remotely sensed data. Environmental Modelling and Software 122: 104069, https://doi.org/10.1016/j.envsoft.2017.11.001.
    OpenUrl
  20. ↵
    1. Lee S.,
    2. Sadeghi A.M.,
    3. Yeo I.-Y.,
    4. McCarty G.W.,
    5. Hively W.D.,
    6. Lang M.W.,
    7. Sharif A.
    . 2017b. Assessing climate change impacts on winter cover crop nitrate uptake efficiency on the Coastal Plain of the Chesapeake Bay Watershed using SWAT model. ASABE Annual International Meeting 1700174. St. Joseph, MI: American Society of Agricultural and Biological Engineers, https://doi.org/10.13031/aim.201700174.
  21. ↵
    1. Lee S.,
    2. Sadeghi A.M.,
    3. Yeo I.-Y.,
    4. McCarty G.W.,
    5. Hively W.D.
    . 2017c. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay watersheds using the SWAT model. Transactions of the ASABE 60(6), https://doi.org/10.13031/trans.12390.
  22. ↵
    1. Lee S.,
    2. Yeo I.-Y.,
    3. Lang W.M.,
    4. Sadeghi M.A.,
    5. McCarty W.G.,
    6. Moglen E.G.,
    7. Evenson G.
    . 2018a. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Journal of Environmental Management 223:37-48.
    OpenUrl
  23. ↵
    1. Lee S.,
    2. Yeo I.-Y.,
    3. Sadeghi A.M.,
    4. McCarty G.W.,
    5. Hively W.D.,
    6. Lang M.W.,
    7. Sharifi A.
    . 2018b. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change scenarios using SWAT model. Hydrology and Earth System Sciences 22:689-708, https://doi.org/10.5194/hess-2017-178.
    OpenUrl
  24. ↵
    1. Lee S.,
    2. Wallace C.,
    3. Sadeghi M.A.,
    4. McCarty W.G.,
    5. Zhong H.,
    6. Yeo I.-Y.
    . 2018c. Impacts of Global Circulation Model (GCM) bias and WXGEN on modeling hydrologic variables. Water 10(6):764, https://doi.org/10.3390/w10060764.
    OpenUrl
  25. ↵
    1. Lee S.,
    2. Sadeghi M.A.,
    3. McCarty W.G.,
    4. Baffaut C.,
    5. Lohani S.,
    6. Thompson A.,
    7. Yeo I.-Y.,
    8. Wallace C.
    . 2018d. Assessing the suitability of the Soil Vulnerability Index (SVI) classification scheme using the SWAT model. CATENA 167:1-12, https://doi.org/10.1016/j.catena.2018.04.021.
    OpenUrl
  26. ↵
    1. Li X.,
    2. McCarty G.W.,
    3. Lang M.W.,
    4. Ducey T.,
    5. Hunt P.,
    6. Miller J.
    . 2017b. Topographic and physicochemical controls on soil denitrification in prior converted croplands located on the Delmarva Peninsula, USA. Geoderma 309:41-49, https://doi.org/10.1016/j.geoderma.2017.09.003.
    OpenUrl
  27. ↵
    1. McCarty G.W.,
    2. McConnell L.L.,
    3. Hapeman C.J.,
    4. Sadeghi A.,
    5. Graff C.,
    6. Hively W.D.,
    7. Lang M.W.,
    8. Fisher T.R.,
    9. Jordan T.,
    10. Rice C.P.,
    11. Codling E.E.,
    12. Whitall D.,
    13. Lynn A.,
    14. Keppler J.,
    15. Fogel M.L.
    . 2008. Water quality and conservation practice effects in the Choptank River watershed. Journal of Soil and Water Conservation 63(6):461-474, https://doi.org/10.2489/jswc.63.6.461.
    OpenUrlAbstract/FREE Full Text
  28. ↵
    1. McCarty G.W.,
    2. Hapeman C.J.,
    3. Rice C.P.,
    4. Hively W.D.,
    5. McConnell L.L.,
    6. Sadeghi A.M.,
    7. Lang M.W.,
    8. Whitall D.R.,
    9. Bialek K.,
    10. Downey P.
    . 2014. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed. Science of the Total Environment 473-474:473-482, https://doi.org/10.1016/j.scitotenv.2013.12.017.
    OpenUrl
    1. Neitsch S.L.,
    2. Arnold J.G.,
    3. Kiniry J.R.,
    4. Williams J.R.
    . 2011. Soil and Water Assessment Tool Theoretical Documentation. Version 2009. College Station, TX: Texas Water Resources Institute.
  29. ↵
    1. Nino De Guzman G.T.,
    2. Hapeman C.J.,
    3. Prabhakara K.,
    4. Codling E.E.,
    5. Shelton D.R.,
    6. Rice C.,
    7. Hively W.D.,
    8. McCarty G.W.,
    9. Torrents A.
    . 2012. Potential pollutant sources in a Choptank River sub-watershed: Influence of agricultural and residential land use and aqueous and atmospheric sources. Science of the Total Environment 430:270-279.
    OpenUrlPubMed
  30. ↵
    1. Prabhakara K.,
    2. Hively W.D.,
    3. McCarty G.W.
    . 2015. Evaluating the relationship between biomass, percent ground cover and remote sensing indices across six winter cover crop fields in Maryland, United States. International Journal of Applied Earth Observation and Geoinformation 39:88-102, doi:10.1016/j.jag.2015.03.002.
    OpenUrlCrossRef
  31. ↵
    1. Quemada M.,
    2. Hively W.D.,
    3. Daughtry C.S.T.,
    4. Lamb B.T.,
    5. Shermeyer J.
    . 2018. Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture. Remote Sensing of Environment 2018:206:33-44, doi:10.1016/j.rse.2017.12.012.
    OpenUrlCrossRef
    1. Sanford W.E.,
    2. Pope J.P.
    . 2013. Quantifying groundwater's role in delaying improvements to Chesapeake Bay water quality. Environmental Science and Technology 47(23):13330-13338.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Sharifi A.,
    2. Lang M.W.,
    3. McCarty G.W.,
    4. Sadeghi A.M.,
    5. Lee S.,
    6. Yen H.,
    7. Rabenhorst M.C.,
    8. Jeong J.,
    9. Yeo I.-Y.
    . 2016. Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration: A paired watershed study. Journal of Hydrology 541:1088-1103.
    OpenUrl
  33. ↵
    1. Sharma P.,
    2. Singh A.,
    3. Singh Kahlon C.,
    4. Singh Brar A.,
    5. Grover K.K.,
    6. Dia M.,
    7. Steiner R.L.
    . 2018. The role of cover crops towards sustainable soil health and agriculture: A review paper. American Journal of Plant Sciences 9(9):1935-1951, https://doi.org/10.4236/ajps.2018.99140.
    OpenUrl
  34. ↵
    1. Soroka A.,
    2. Hively W.D.,
    3. Lamb B.T.
    . 2019. Landsat-derived wintertime greenness datasets and results from cover crop performance analysis within the Tuckahoe Creek watershed, Maryland, from 1984 to 2017. US Geological Survey data release. Washington, DC: US Geological Survey. https://doi.org/10.5066/P9OZ6ND0.
  35. ↵
    1. Staver K.,
    2. Brinsfield R.,
    3. Stevenson J.C.
    . 1989. The effect of best management practices on nitrogen transport into Chesapeake Bay. Proceedings of the 2nd Pan-American Regional Conference of the International Commission on Irrigation and Drainage, Ottawa, Canada, June 8-9, 1989. Denver, CO: US Committee on Irrigation and Drainage, Denver.
  36. ↵
    1. Sun L.,
    2. Anderson M.C.,
    3. Gao F.,
    4. Hain C.,
    5. Alfieri J.G.,
    6. Sharifi A.,
    7. McCarty G.W.,
    8. Yang Y.,
    9. Kustas W.P.,
    10. McKee L.
    . 2017. Investigating water use over the Choptank River watershed using a multisatellite data fusion approach. Water Resources Research 53:5298-5319, https://doi.org/10.1002/2017WR020700.
    OpenUrl
  37. ↵
    1. Tucker C.
    1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127-150.
    OpenUrlCrossRef
  38. ↵
    1. University of Maryland
    . 2018. Weather Data for the Wye REC. College Park, MD: University of Maryland, College of Agriculture and Natural Resources. https://agnr.umd.edu/research/resources/weather-data/weather-data-wye-rec.
  39. ↵
    1. USDA NASS (National Agricultural Statistics Service)
    . 2019. CropScape: Cropland Data Layer. Washington, DC: USDA National Agricultural Statistics Service. https://nassgeodata.gmu.edu/CropScape/.
  40. ↵
    1. Whitall D.,
    2. Hively W.D.,
    3. Leight A.K.,
    4. Hapeman C.J.,
    5. McConnell L.L.,
    6. Fisher T.,
    7. Codling E.E.,
    8. Rice C.,
    9. McCarty G.W.,
    10. Sadeghi A.M.
    . 2010. Pollutant fate and spatio-temporal variability in the Choptank River estuary: Factors influencing water quality. Science of the Total Environment 408:2096-2108.
    OpenUrlPubMed
  41. ↵
    1. Yeo I.-Y.,
    2. Lee S.,
    3. Sadeghi A.M.,
    4. Beeson P.C.,
    5. Hively W.D.,
    6. McCarty G.W.,
    7. Lang M.W.
    . 2014. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model. Hydrology and Earth System Sciences 18:5239-5253.
    OpenUrl
  42. ↵
    1. Yeo I.-Y.,
    2. Lang M.,
    3. Lee S.,
    4. McCarty G.W.,
    5. Sadeghi A.M.,
    6. Yetemen O.,
    7. Huang C.
    . 2019a. Mapping the landscape-level hydrological connectivity of headwater wetlands to downstream waters: A geospatial modelling approach—Part I. Science of the Total Environment 653:1546-1556, doi:10.1016/j.scitotenv.2018.11.238.
    OpenUrlCrossRef
  43. ↵
    1. Yeo I.-Y.,
    2. Lee S.,
    3. Lang M.,
    4. Yetemen O.,
    5. McCarty G.W.,
    6. Sadeghi A.M.,
    7. Evenson G.
    . 2019b. Mapping landscape-scale hydrological connectivity of headwater wetlands to downstream water: A catchment modelling approach - Part 2. Science of the Total Environment 653:1557-1570, doi:10.1016/j.scitotenv.2018.11.237.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (3)
Journal of Soil and Water Conservation
Vol. 75, Issue 3
May/June 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
11 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling
W.D. Hively, S. Lee, A.M. Sadeghi, G.W. McCarty, B.T. Lamb, A. Soroka, J. Keppler, I.-Y. Yeo, G.E. Moglen
Journal of Soil and Water Conservation May 2020, 75 (3) 362-375; DOI: 10.2489/jswc.75.3.362

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling
W.D. Hively, S. Lee, A.M. Sadeghi, G.W. McCarty, B.T. Lamb, A. Soroka, J. Keppler, I.-Y. Yeo, G.E. Moglen
Journal of Soil and Water Conservation May 2020, 75 (3) 362-375; DOI: 10.2489/jswc.75.3.362
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Physicochemical properties of biochar derived from wood of Gliricidia sepium based on the pyrolysis temperature and its applications
Show more Research Section

Similar Articles

Keywords

  • CEAP
  • Choptank
  • cover crops
  • remote sensing
  • SWAT
  • water quality

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society