Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleA Section

Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years

Daniel N. Moriasi, Lisa F. Duriancik, E. John Sadler, Teferi Tsegaye, Jean L. Steiner, Martin A. Locke, Timothy C. Strickland and Deanna L. Osmond
Journal of Soil and Water Conservation May 2020, 75 (3) 57A-74A; DOI: https://doi.org/10.2489/jswc.75.3.57A
Daniel N. Moriasi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa F. Duriancik
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. John Sadler
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Teferi Tsegaye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean L. Steiner
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin A. Locke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy C. Strickland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Deanna L. Osmond
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Allred B.J.,
    2. Martinez L.R.,
    3. Fessehazion M.,
    4. Rouse G.,
    5. Williamson T.,
    6. Wishart D.,
    7. Koganti T.,
    8. Freeland R.,
    9. Eash N.,
    10. Batschelet A.,
    11. Featheringill R.
    . 2020. Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agricultural Water Management 232:106036. https://doi.org/10.1016/j.agwat.2020.106036.
    OpenUrl
  2. ↵
    1. Allred B.J.,
    2. Wishart D.,
    3. Martinez L.R.,
    4. Schomberg H.H.,
    5. Mirsky S.B.,
    6. Meyers G.E.,
    7. Elliott J.,
    8. Charyton C.
    . 2018. Delineation of agricultural drainage pipe patterns using ground penetrating radar integrated with a real-time kinematic global navigation satellite system. Agriculture 8(11):167. https://doi.org/10.3390/agriculture8110167.
    OpenUrl
  3. ↵
    1. Arnold J.G.,
    2. Bieger K.,
    3. White M.J.,
    4. Srinivasan R.,
    5. Dunbar J.A.,
    6. Allen P.M.
    . 2018. Use of decision tables to simulate management in SWAT+. Water 10:713. doi.org/10.3390/w10060713.
    OpenUrl
  4. ↵
    1. Arnold J.G.,
    2. Harmel R.D.,
    3. Johnson M-V.V.,
    4. Bingner R.,
    5. Strickland T.C.,
    6. Walbridge M.,
    7. Santhi C.,
    8. DiLuzio M.,
    9. Wang X.
    . 2014. Impact of the Agricultural Research Service Benchmark Watershed Project on the Conservation Effects Assessment Project National Cropland Assessment and Conservation Policy. Journal of Soil and Water Conservation 69(5):137A-144A, doi:10.2489/jswc.69.5.137A.
    OpenUrlFREE Full Text
  5. ↵
    1. Arnold J.G.,
    2. Moriasi D.N.,
    3. Gassman P.W.,
    4. Abbaspour K.C.,
    5. White M.J.,
    6. Srinivasan R.,
    7. Santhi C.,
    8. Harmel R.D.,
    9. van Griensven A.,
    10. Van Liew M.W.,
    11. Kannan N.,
    12. Jha M.K.
    . 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1494-1508.
    OpenUrl
  6. ↵
    1. Arnold J.G.,
    2. Srinivasan R.,
    3. Muttiah R.S.,
    4. Williams J.R.
    . 1998. Large-area hydrologic modeling and assessment: Part I. Model development. Journal of the American Water Resources Association 34(1):73-89.
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Aryal N.,
    2. Reba M.L.,
    3. Straitt N.,
    4. Teague T.G.,
    5. Bouldin J.,
    6. Dabney S.
    . 2018. Impact of cover crop and season on nutrients and sediment in runoff water measured at the edge-of-fields in the Mississippi Delta of Arkansas. Journal of Soil and Water Conservation 73(1):24-34, doi:10.2489/jswc.73.1.24.
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. ASABE (American Society of Agricultural and Biological Engineers)
    . 2017. Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models, ASABE EP621. St. Joseph, MI: American Society of Agricultural and Biological Engineers.
  9. ↵
    1. Baffaut C.,
    2. Ghidey F.,
    3. Lerch R.N.,
    4. Veum K.S.,
    5. Sadler E.J.,
    6. Sudduth K.A.,
    7. Kitchen N.R.
    . 2020a. Effects of combined conservation practices on soil and water quality in the Central Mississippi River Basin. Journal of Soil and Water Conservation 75(3):340-351, doi:10.2489/jswc.75.3.340.
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Baffaut C.,
    2. Ghidey F.,
    3. Sadler E.J.,
    4. Anderson S.H.
    . 2015. Long-term agro-ecosystem research in the central Mississippi River Basin, USA—SWAT simulation of flow and water quality in the Goodwater Creek Experimental Watershed. Journal of Environmental Quality 44:84-96.
    OpenUrl
  11. ↵
    1. Baffaut C.,
    2. Thompson A.L.,
    3. Duriancik L.F.,
    4. Ingram K.A.,
    5. Norfleet M.L.
    . 2020b. Assessing cultivated cropland inherent vulnerability to sediment and nutrient losses with the Soil Vulnerability Index. Journal of Soil and Water Conservation 75(1):20A-22A, doi:10.2489/jswc.75.1.20A.
    OpenUrlFREE Full Text
  12. ↵
    1. Beck W.J.,
    2. Moore P.L.,
    3. Schilling K.E.,
    4. Wolter C.F.,
    5. Isenhart T.M.,
    6. Cole K.J.,
    7. Tomer M.D.
    . 2019. Changes in lateral floodplain connectivity accompanying stream channel evolution: Implications for sediment and nutrient budgets. Science of the Total Environment 660:1015-1028. https://doi.org/10.1016/j.scitotenv.2019.01.038.
    OpenUrl
  13. ↵
    1. Bieger K.,
    2. Arnold J.G.,
    3. Rathjens H.,
    4. White M.J.,
    5. Bosch D.D.,
    6. Allen P.M.,
    7. Volk M.,
    8. Srinivasan R.
    . 2017. Introduction to SWAT+, a completely restructured version of the soil and water assessment tool. Journal of the American Water Resources Association 53(1):115-130. doi.org/10.1111/1752-1688.12482.
    OpenUrl
  14. ↵
    1. Bingner R.L.,
    2. Theurer F.D.,
    3. Yuan Y.
    . 2015. AnnAGNPS technical processes. Washington, DC: USDA Natural Resources Conservation Service. http://www.wcc.nrcs.usda.gov/ftpref/wntsc/H&H/AGNPS/downloads/AnnAGNPS_Technical_Documentation.pdf.
  15. ↵
    1. Bingner R.L.,
    2. Wells R.R.,
    3. Momm H.,
    4. Rigby J.R. Jr.,
    5. Theurer F.D.
    . 2016. Ephemeral gully channel width and erosion simulation technology. Natural Hazards 80(3):1949-1966.
    OpenUrl
  16. ↵
    1. Bjorneberg D.L.,
    2. King B.A.,
    3. Koehn A.C.
    . 2020a. Watershed water balance changes as furrow irrigation is converted to sprinkler irrigation in an arid region. Journal of Soil and Water Conservation 75(3):254-262, doi:10.2489/jswc.75.3.254.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Bosch D.D.,
    2. Doro L.,
    3. Jeong J.,
    4. Wang X.,
    5. Williams J.R.,
    6. Pisani O.,
    7. Endale D.M.,
    8. Strickland T.C.
    . 2020a. Conservation tillage effects in the Atlantic Coastal Plain: An APEX examination. Journal of Soil and Water Conservation 75(3):400-415, doi:10.2489/jswc.75.3.400.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Bosch D.D.,
    2. Pisani O.,
    3. Coffin A.W.,
    4. Strickland T.C.
    . 2020b. Water quality and land cover in the Coastal Plain Little River Watershed, Georgia, United States. Journal of Soil and Water Conservation 75(3):263-277, doi:10.2489/jswc.75.3.263.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Bosch D.D.,
    2. Potter T.L.,
    3. Strickland T.C.,
    4. Hubbard R.K.
    . 2015. Dissolved nitrogen, chloride, and potassium loss from fields in conventional and conservation tillage. Transactions of the ASABE 58(6):1559-1571, doi:10.13031/trans.58.11223.
    OpenUrlCrossRef
  20. ↵
    1. Bosch D.D.,
    2. Sheridan J.M.,
    3. Lowrance R.R.,
    4. Hubbard R.K.,
    5. Strickland T.C.,
    6. Feyereisen G.W.,
    7. Sullivan D.G.
    . 2007. Little River Experimental Watershed database. Water Resources Research 43:W09470, doi:10.1029/2006WR005844.
    OpenUrlCrossRef
  21. ↵
    1. Bryant R.B.,
    2. Veith T.L.,
    3. Feyereisen G.W.,
    4. Buda A.R.,
    5. Church C.D.,
    6. Folmar G.J.,
    7. Schmidt J.P.,
    8. Dell C.J.,
    9. Kleinman P.J.A.
    . 2011. USDA-ARS Mahantango Creek Watershed, Pennsylvania, United States: Physiography and history. Water Resources Research 47:W08701, doi:10.1029/2010WR010056.
    OpenUrlCrossRef
  22. ↵
    1. Buda A.R.,
    2. Kleinman P.J.A.,
    3. Srinivasan M.S.,
    4. Bryant R.B.,
    5. Feyereisen G.W.
    . 2009a. Effects of hydrology and field management on phosphorus transport in surface runoff. Journal of Environmental Quality 38:2273-2284, doi:10.2134/jeq2008.0501.
    OpenUrlCrossRefPubMed
  23. ↵
    1. Buda A.R.,
    2. Kleinman P.J.A.,
    3. Srinivasan M.S.,
    4. Bryant R.B.,
    5. Feyereisen G.W.
    . 2009b. Factors influencing surface runoff generation from two agricultural hillslopes in central Pennsylvania. Hydrological Processes 23:1295-1312, doi:10.1002/hyp.7237.
    OpenUrlCrossRef
  24. ↵
    1. Cullum R.F.,
    2. Locke M.A.,
    3. Knight S.S.
    . 2010. Effects of Conservation Reserve Program on runoff and lake water quality in an oxbow lake watershed. Journal of International Environmental Application and Science 5(3):318-328.
    OpenUrl
  25. ↵
    1. Duriancik L.F.,
    2. Bucks D.A.,
    3. Dobrowolski J.P.,
    4. Drewes T.,
    5. Eckles S.D.,
    6. Jolley L.,
    7. Kellogg R.L.,
    8. Lund D.,
    9. Makuch J.R.,
    10. O'Neill M.P.,
    11. Rewa C.A.,
    12. Walbridge M.R.,
    13. Parry R.,
    14. Weltz M.A.
    . 2008. The first five years of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation 63(6):185A-197A, doi:10.2498/jswc.63.6.185A.
    OpenUrlFREE Full Text
  26. ↵
    1. Duriancik L.F.,
    2. Flahive K.,
    3. Osmond D.
    . 2018. Application of monitoring to inform policy and programs and achieve water quality goals. Journal of Soil and Water Conservation 73(1):11A-15A, doi:10.2489/jswc.73.1.11A.
    OpenUrlFREE Full Text
  27. ↵
    1. Endale D.,
    2. Bosch D.D.,
    3. Potter T.L.,
    4. Strickland T.C.
    . 2014. Sediment loss and runoff from cropland in a Southeast Atlantic Coastal Plain landscape. Transactions of the American Society of Agricultural and Biological Engineers 57(6):1611-1626, doi:10.13031/trans.57.10554.
    OpenUrlCrossRef
  28. ↵
    1. Endale D.M.,
    2. Schomberg H. H.,
    3. Fisher D.S.,
    4. Franklin D.H.,
    5. Jenkins M.B.
    . 2013. Flue gas desulfurization gypsum: Implication for runoff and nutrient losses associated with boiler litter use on pastures on ultisols. Journal of Environmental Quality 43(1):281-289, doi:10.2134/jeq2012.0259.
    OpenUrlCrossRef
  29. ↵
    1. Evenson G.R.,
    2. Jones C.N.,
    3. McLaughlin D.L.,
    4. Golden H.E.,
    5. Lane C.R.,
    6. DeVries B.,
    7. Alexander L.C.,
    8. Lang M.W.,
    9. McCarty G.W.,
    10. Sharifi A.
    . 2018. A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X 1:100002.
  30. ↵
    1. Feyereisen G.W.,
    2. Lowrance R.R.,
    3. Strickland T.C.,
    4. Bosch D.D.,
    5. Sheridan J.M.
    . 2008. Long-term stream chemistry trends in the South Georgia Little River Experimental Watershed. Journal of Soil and Water Conservation 63(6):475-486, doi:10.2489/jswc.63.6.475.
    OpenUrlAbstract/FREE Full Text
  31. ↵
    1. Fortuna A.M,
    2. Starks P.J.,
    3. Nelson A.,
    4. Steiner J.L.
    . 2019. Prediction of soil health indicators using a field spectroradiometer equipped with an illuminating contact probe. Soil Systems 3(4):71; doi:10.3390/soilsystems3040071.
    OpenUrlCrossRef
  32. ↵
    1. Francesconi W.,
    2. Smith D.R.,
    3. Flanagan D.C.,
    4. Huang C.,
    5. Wang X.
    . 2015. Modeling conservation practices in APEX: From the field to the watershed. Journal of Great Lakes Research 41:760-769
    OpenUrl
  33. ↵
    1. Franklin D.H.,
    2. Steiner J.L.,
    3. Duke S.E.,
    4. Moriasi D.N.,
    5. Starks P.J.
    . 2013. Spatial considerations in wet and dry periods for phosphorus in streams of the Fort Cobb Watershed, United States. Journal of the American Water Resources Association 49(4):908-922, doi:10.1111/jawr.12048.
    OpenUrlCrossRef
  34. ↵
    1. Garbrecht J.D.,
    2. Nearing M.A.,
    3. Shields F.D.,
    4. Tomer M.D.,
    5. Sadler E.J.,
    6. Bonta J.V.,
    7. Baffaut C.
    . 2014a. Impact of weather and climate scenarios on conservation assessment outcomes, Journal of Soil and Water Conservation 69(5):374-392, doi:10.2489/jswc.69.5.374.
    OpenUrlAbstract/FREE Full Text
  35. ↵
    1. Garbrecht J.D.,
    2. Nearing M.A.,
    3. Zhang X.C.,
    4. Steiner J.L.
    . 2016. Uncertainty of climate change impacts on soil erosion from cropland in central Oklahoma. Applied Engineering in Agriculture 32(6):833-346.
    OpenUrl
  36. ↵
    1. Garbrecht J.D.,
    2. Starks P.J.
    . 2009. Watershed sediment yield reduction through soil conservation in a west-central Oklahoma watershed. Ecohydrology 2:313-320.
    OpenUrl
  37. ↵
    1. Garbrecht J.D.,
    2. Zhang X.C.,
    3. Steiner J.L.
    . 2014b. Climate change and observed climate trends in the Fort Cobb Experimental Watershed, Oklahoma. Journal of Environmental Quality 43:1319-1327.
    OpenUrl
  38. ↵
    1. Gburek W.J.,
    2. Drungil C.C.,
    3. Srinivasan M.S.,
    4. Needelman B.A.,
    5. Woodward D.E.
    . 2002. Variable-source-area controls on phosphorus transport: Bridging the gap between research and design. Journal of Soil and Water Conservation 57(6)534-543.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. Gellis A.C.,
    2. Fuller C.C.,
    3. Van Metre P.C.,
    4. Filstrup C.T.,
    5. Tomer M.D.,
    6. Cole K.J.,
    7. Sabitov T.
    . 2018. Combining sediment fingerprinting with age-dating sediment using fallout radionuclides for an agricultural stream, Walnut Creek, Iowa, USA. Journal of Soils and Sediments 19:3374-3396. https://doi.org/10.1007/s11368-018-2168-z.
    OpenUrl
  40. ↵
    1. Gonzalez J.M.,
    2. Smith D.R.,
    3. Livingston S.,
    4. Warnemuende-Pappas E.,
    5. Zwonitzer M.
    . 2016. Blind inlets: Conservation practices to reduce herbicide losses from closed depressional areas. Journal of Soils and Sediments 16:1921-1932.
    OpenUrl
  41. ↵
    1. Goodrich D.C.,
    2. Burns I.S.,
    3. Unkrich C.L.,
    4. Semmens D.J.,
    5. Guertin D.P.,
    6. Hernandez M.,
    7. Yatheendradas S.,
    8. Kennedy J.R.,
    9. Levick L.R.
    . 2012. KINEROS2/AGWA: Model use, calibration, and validation. Transactions of the ASABE 55(4):1561-1574.
    OpenUrl
  42. ↵
    1. Goodrich D.C.,
    2. Wei H.,
    3. Burns I.S.,
    4. Guertin D.P.,
    5. Spaeth K.,
    6. Hernandez M.,
    7. Holifield-Collins C.,
    8. Kautz M.,
    9. Heilman P.,
    10. Levick L.R.,
    11. Ponce G.,
    12. Carrillo E.,
    13. Tiller R.
    . 2020. Evaluation of Conservation Effects Assessment Project Grazing Lands conservation practices on the Cienega Creek Watershed in southeast Arizona with AGWA/RHEM modeling tools. Journal of Soil and Water Conservation 75(3):304-318, doi:10.2489/jswc.75.3.304.
    OpenUrlAbstract/FREE Full Text
  43. ↵
    1. Gregory L.F.,
    2. Harmel R.D.,
    3. Karthikeyan R.,
    4. Wagner K.,
    5. Gentry T.J.,
    6. Aitkenhead-Peterson J.A.
    . 2019. Elucidating the effects of land cover and usage on background Escherichia coli sources in edge-of-field runoff. Journal of Environmental Quality. 48(6):1800-1808.
    OpenUrl
  44. ↵
    1. Nowak P.,
    2. Schnepf M.
    1. Groffman P.M.,
    2. Gold A.J.,
    3. Duriancik L.,
    4. Lowrance R.R.
    . 2010. From connecting the dots to threading the needle: The challenges ahead in managing agricultural landscapes for environmental quality. In Managing Agricultural Landscapes for Environmental Quality II: Achieving More Effective Conservation, eds. Nowak P., Schnepf M.. Ankeny, IA: Soil and Water Conservation Society.
  45. ↵
    1. Guertin D.,
    2. Goodrich D.C.,
    3. Burns I.,
    4. Korgaonkar Y.,
    5. Barlow J.,
    6. Sheppard B.,
    7. Unkrich C.L.,
    8. Kepner W.
    . 2015. Automated Geospatial Watershed Assessment Tool (AGWA). Environmental and Water Resources Institute 2015 Watershed Management Conference (American Society of Civil Engineers), Reston, Virginia, August 5-7, 2015.
  46. ↵
    1. Guzman J.A.,
    2. Moriasi D.N.,
    3. Gowda P.H.,
    4. Steiner J.L.,
    5. Arnold J.G.,
    6. Srinivasan R.,
    7. Starks P.J.
    . 2015. A model integration framework for linking SWAT and MODFLOW. Environmental Modelling and Software 73:103-116.
    OpenUrl
  47. ↵
    1. Harmel D.R.,
    2. Christianson L.E.,
    3. McBroom M.W.,
    4. Smith D.R.,
    5. Higgs K.D.
    . 2016. Expansion of the MANAGE Database with Forest and Drainage Studies. Journal of the American Water Resources Association 52(5):1275-1279. https://doi.org/10.1111/1752-1688.12438.
    OpenUrl
  48. ↵
    1. Harmel D.R.,
    2. Haney R.L.,
    3. Smith D.R.
    . 2011. Effects of annual turkey litter application on surface soil quality of a Texas Blackland Vertisol. Soil Science 176(5):227-236.
    OpenUrl
  49. ↵
    1. Harmel R.D.,
    2. Haney R.L.,
    3. Smith D.R.,
    4. White M.,
    5. King K.W.
    . 2014. USDA-ARS Riesel Watersheds, Riesel, Texas, USA: Water quality research database. Water Resources Research 50:8374-8382, doi:10.1002/2013WR015191.
    OpenUrlCrossRefGeoRef
  50. ↵
    1. Harmel R.D.,
    2. Pampell R.A.,
    3. Leytem A.B.,
    4. Smith D.R.,
    5. Haney R.L.
    . 2018. Assessing edge-of-field nutrient runoff from agricultural lands in the United States: How clean is clean enough? Journal of Soil and Water Conservation 73(1):9-23; doi:10.2489/jswc.73.1.9.
    OpenUrlAbstract/FREE Full Text
  51. ↵
    1. Harmel D.,
    2. Qian S.,
    3. Reckhow K.,
    4. Casebolt P.
    . 2008. The MANAGE Database: Nutrient load and site characteristic updates and runoff concentration data. Journal of Environment Quality 37(6):2403. https://doi.org/10.2134/jeq2008.0079.
    OpenUrl
  52. ↵
    1. Harmel R.D.,
    2. Smith D.R.,
    3. Haney R.L.,
    4. Dozier M.
    . 2009. Nitrogen and phosphorus runoff from cropland and pasture fields fertilized with poultry litter. Journal of Soil and Water Conservation 64(6):400-412, doi:10.2489/jswc.64.6.400.
    OpenUrlAbstract/FREE Full Text
  53. ↵
    1. Harmel R.D.,
    2. Torbert H.A.,
    3. Haggard B.E.,
    4. Haney R.,
    5. Dozier M.
    . 2004. Water quality impacts of converting to a poultry litter fertilization strategy. Journal of Environmental Quality 33(6):2229-2242.
    OpenUrlCrossRefPubMedWeb of Science
  54. ↵
    1. Harmel R.D.,
    2. Wagner K.L.,
    3. Martin E.,
    4. Gentry T.J.,
    5. Karthikeyan R.,
    6. Dozier M.,
    7. Coufal C.
    . 2013. Impact of poultry litter application and land use on E. coli runoff from small agricultural watersheds. Transactions of the ASABE 6(1):3-16.
    OpenUrl
  55. ↵
    1. Hatfield J.L.,
    2. Jaynes D.B.,
    3. Burkart M.R.,
    4. Cambardella C.A.,
    5. Moorman T.B.,
    6. Prueger J.H.,
    7. Smith M.A.
    . 1999. Water quality in Walnut Creek Watershed: Setting and farming practices. Journal of Environmental Quality 28(1):11-24.
    OpenUrlGeoRef
  56. ↵
    1. Hively D.W.,
    2. Hapeman C.J.,
    3. McConnell L.L.,
    4. Fisher T.R.,
    5. Rice C.P.,
    6. McCarty G.W.,
    7. Sadeghi A.M.,
    8. Whitall D.R.,
    9. Downey P.M.,
    10. Nino de Guzman G.T.,
    11. Bialek-Kalinski K.,
    12. Lang M.W.,
    13. Gustafson A.B.,
    14. Sutton A.J.
    . 2011. Relating nutrient and herbicide fate with landscape features and characteristics of 15 subwatersheds in the Choptank River watershed. Science of the Total Environment 409:3866-3878, doi:10.1016/j.scitotenv.2011.05.024.
    OpenUrlCrossRefPubMed
  57. ↵
    1. Hively W.D.,
    2. Lamb B.,
    3. Daughtry C.S.,
    4. McCarty G.W.,
    5. Quemada M.
    . 2018. Mapping crop residue and tillage intensity using WorldView-3 satellite shortwave infrared residue indices. Remote Sensing 10(10):1657; https://doi.org/10.3390/rs10101657.
    OpenUrl
  58. ↵
    1. Hively W.D.,
    2. Lang M.,
    3. McCarty G.W.,
    4. Keppler J.,
    5. Sadeghi A.,
    6. McConnell L.L.
    . 2009. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. Journal of Soil and Water Conservation 64(5):303-313, doi:10.2489/jswc.64.5.303.
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Hively W.D.,
    2. Lee S.,
    3. Sadeghi A.M.,
    4. McCarty G.W.,
    5. Lamb B.T.,
    6. Soroka A.,
    7. Keppler J.,
    8. Yeo I.-Y.,
    9. Moglen G. E.
    . 2020. Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling. Journal of Soil and Water Conservation 75(3):362-375, doi:10.2489/jswc.75.3.362.
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Ippolito J.A.,
    2. Bjorneberg D.L.,
    3. Stott D.E.,
    4. Karlen D.L.
    . 2018. Soil quality improvement through conversion to sprinkler irrigation. Soil Science Society of America Journal 81(6):1505-1516.
    OpenUrl
  61. ↵
    1. Jaynes D.B,
    2. Isenhart T.M.
    . 2014. Reconnecting tile drainage to riparian buffer hydrology for enhanced nitrate removal. Journal of Environmental Quality 43(2):631-8, doi:10.2134/jeq2013.08.0331.
    OpenUrlCrossRef
  62. ↵
    1. Jaynes D.B.,
    2. Isenhart T.M.
    . 2019. Performance of saturated buffers in Iowa, USA. Journal of Environmental Quality 48:289-296. doi:10.2134/jeq2018.03.0115.
    OpenUrlCrossRef
  63. ↵
    1. Karlen D.L.,
    2. Stott D.E.,
    3. Cambardella C.A.,
    4. Kremer R.J.,
    5. King K.W.,
    6. McCarty G.W.
    . 2014. Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. Journal of Soil and Water Conservation 69(5):393-401, doi:10.2489/jswc.69.5.393
    OpenUrlAbstract/FREE Full Text
  64. ↵
    1. King K.W.,
    2. Fausey N.R.,
    3. Dunn R.D.,
    4. Smiley P.C.,
    5. Sohngen B.L.
    . 2012. Response of reservoir atrazine concentrations following regulatory and management changes. Journal of Soil and Water Conservation 67(5):416-424, doi:10.2489/jswc.67.5.416.
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. King K.W.,
    2. Williams M.R.,
    3. Dick W.A.,
    4. LaBarge G.A.
    . 2016. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum. Journal of Environmental Quality 45(5):1722-1730, doi:10.2134/jeq2016.04.0132.
    OpenUrlCrossRef
  66. ↵
    1. King K.W.,
    2. Williams M.R.,
    3. Fausey N.R.
    . 2015. Contributions of systematic tile drainage to watershed-scale phosphorus transport. Journal of Environmental Quality 44(2):486-94, doi:10.2134/jeq2014.04.0149.
    OpenUrlCrossRef
  67. ↵
    1. King K.W.,
    2. Williams M.R.,
    3. LaBarge G.A.,
    4. Smith D.R.,
    5. Reutter J.M.,
    6. Duncan E.W.,
    7. Pease L.A.
    . 2018. Addressing agricultural phosphorus loss in artificially drained landscapes with 4R nutrient management practices. Journal of Soil and Water Conservation 73(1):35-47, doi:10.2489/jswc.73.1.35.
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Kladivko E.J.,
    2. Kaspar T.C.,
    3. Jaynes D.B.,
    4. Singer J.,
    5. Morin X.K.,
    6. Searchinger T.
    . 2014. Cover crops in the upper midwestern United States: Potential adoption and reduction of nitrate leaching in the Mississippi River Basin. Journal of Soil and Water Conservation 69(4)279-291, doi:10.2489/jswc.69.4.279.
    OpenUrlAbstract/FREE Full Text
  69. ↵
    1. Kleinman P.J.A.,
    2. Sharpley A.N.,
    3. Buda A.R.,
    4. Easton Z.M.,
    5. Lory J.A.,
    6. Osmond D.L.,
    7. Radcliffe D.E.,
    8. Nelson N.O.,
    9. Veith T.L.,
    10. Doody D.G.
    . 2017. The promise, practice and state of planning tools to assess site vulnerability to runoff phosphorus loss. Journal of Environmental Quality 46(6):1243, doi:10.2134/jeq2017.10.0395.
    OpenUrlCrossRef
  70. ↵
    1. Kleinman P.J.A.,
    2. Sharpley A.N.,
    3. Saporito L.S.,
    4. Buda A.R.,
    5. Bryant R.B.
    . 2009. Application of manure to no-till soils: Phosphorus losses by subsurface and surface pathways. Nutrient Cycling in Agroecosystems 84:215–227, doi:10.1007/s10705-008-9238-3.
    OpenUrlCrossRef
  71. ↵
    1. Kleinman P.J.A.,
    2. Spiegal S.,
    3. Rigby J.R.,
    4. Goslee S.C.,
    5. Baker J.M.,
    6. Bestelmeyer B.T.,
    7. Boughton R.K.,
    8. Bryant R.B.,
    9. Cavigelli M.A.,
    10. Derner J.D.,
    11. Duncan E.W.,
    12. Goodrich D.C.,
    13. Huggins D.R.,
    14. King K.W.,
    15. Liebig M.A.,
    16. Locke M.A.,
    17. Mirsky S.B.,
    18. Moglen G.E.,
    19. Moorman T.B.,
    20. Pierson F.B.,
    21. Robertson G.P.,
    22. Sadler E.J.,
    23. Shortle J.S.,
    24. Steiner J.L.,
    25. Strickland T.C.,
    26. Swain H.M.,
    27. Tsegaye T.,
    28. Williams M.R.,
    29. Walthall C.L.
    . 2018. Advancing the sustainability of US agriculture through long-term research. Journal of Environmental Quality 47:1412–1425. doi:10.2134/jeq2018.05.0171.
    OpenUrlCrossRef
  72. ↵
    1. Knight S.S.,
    2. Cullum R.F.
    . 2014. Effects of conservation practices on fisheries management. Journal of Agriculture and Biodiversity Research 3(1):1-8.
    OpenUrl
  73. ↵
    1. Kuhnle R.A.,
    2. Bingner R.L.,
    3. Alonso C.V.,
    4. Wilson C.G.,
    5. Simon A.
    . 2008. Conservation practice effects on sediment load in the Goodwin Creek Experimental Watershed. Journal of Soil and Water Conservation 63(6):496-503, doi:10.2489/jswc.63.6.496.
    OpenUrlAbstract/FREE Full Text
  74. ↵
    1. Lee S.,
    2. Li GW.
    3. McCarty,
    4. GE. Moglen,
    5. X.,
    6. Wallace C.W.
    . 2020. Assessing the effectiveness of riparian buffers for reducing organic nitrogen loads in the Coastal Plain of the Chesapeake Bay watershed using a watershed model. Journal of Hydrology 585:124779. https://doi.org/10.1016/j.jhydrol.2020.124779.
    OpenUrl
  75. ↵
    1. Lerch R.N.,
    2. Baffaut C.,
    3. Kitchen N.R.,
    4. Sudduth K.A.,
    5. Sadler E.J.
    . 2015. Long-term agro-ecosystem research in the Central Mississippi River Basin, USA – Dissolved nitrogen and phosphorus transport in a high runoff potential watershed. Journal of Environmental Quality 44:44-57.
    OpenUrl
  76. ↵
    1. Lerch R.N.,
    2. Harbourt C.M.,
    3. Broz R.R.,
    4. Thevary T.J.
    . 2013. Atrazine incorporation and soil erosion: Balancing competing water quality concerns for claypan soils. Transactions of the ASABE 56(6):1305-1316. https://doi.org/10.13031/trans.56.10272.
    OpenUrl
  77. ↵
    1. Lizotte R.E.,
    2. Knight S.S.,
    3. Bryant C.T.
    . 2010. Sediment quality assessment of Beasley Lake: Bioaccumulation and effects of pesticides in Hyalella azteca. Chemistry and Ecology 26(6):411-424, doi:10.1080/02757540.2010.522997.
    OpenUrlCrossRef
  78. ↵
    1. Lizotte R.E.,
    2. Knight S.S.,
    3. Locke M.A.,
    4. Bingner R.L.
    . 2014. Influence of integrated watershed-scale agricultural conservation practices on lake water quality. Journal of Soil and Water Conservation 69(2):160-170, doi:10.2489/jswc.69.2.160.
    OpenUrlAbstract/FREE Full Text
  79. ↵
    1. Lizotte R.E.,
    2. Locke M.A.
    . 2018. Assessment of runoff water quality for an integrated best management practice system in an agricultural watershed. Journal of Soil and Water Conservation 73(3):247-256, doi:10.2489/jswc.73.3.247.
    OpenUrlAbstract/FREE Full Text
  80. ↵
    1. Lizotte R.E.,
    2. Yasarer L.M.W.,
    3. Locke M.A.,
    4. Bingner R.L.,
    5. Knight S.S.
    . 2017. Lake nutrient responses to integrated conservation practices in an agricultural watershed. Journal of Environmental Quality 46:330-338, doi:10.2134/jeq2016.08.0324.
    OpenUrlCrossRef
  81. ↵
    1. Locke M.A.
    2004. Mississippi Delta Management Systems Evaluation Area: Overview of water quality issues on a watershed scale. ACS Symposium Series 877, p. 1-15.
  82. ↵
    1. Locke M.A.,
    2. Lizotte R.E.,
    3. Yasarer L.M.W.,
    4. Bingner R.L.,
    5. Moore M.T.
    . 2020. Surface runoff in Beasley Lake watershed: Effect of land management practices in a Lower Mississippi River Basin watershed. Journal of Soil and Water Conservation 75(3):278-290, doi:10.2489/jswc.75.3.278.
    OpenUrlAbstract/FREE Full Text
  83. ↵
    1. Locke M.A.,
    2. Weaver M.A.,
    3. Zablotowicz R.M.,
    4. Steinreide R.W.,
    5. Bryson C.T.,
    6. Cullum R.F.
    . 2011. Chemosphere 83:1532-1538, doi:10.1016/j.chemosphere.2011.01.034.
    OpenUrlCrossRefPubMed
  84. ↵
    1. Lohani S.,
    2. Baffaut C.,
    3. Thompson A.L.,
    4. Aryal N.,
    5. Bingner R.L.,
    6. Bjorneberg D.L.,
    7. Bosch D.D..,
    8. Bryant R.B.,
    9. Buda A.,
    10. Dabney S.M.,
    11. Davis A.R.,
    12. Duriancik L.F.,
    13. James D.E.,
    14. King K.W.,
    15. Kleinman P.J.A.,
    16. Locke M.,
    17. McCarty G.W.,
    18. Pease L.A..
    19. Reba M.L.,
    20. Smith D.R.,
    21. Tomer M.D.,
    22. Veith T.L.,
    23. Williams M.R.,
    24. Yasarer L.M.W.
    . 2019. Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group. Journal of Soil and Water Conservation 75(1)12-27, doi:10.2489/jswc.75.1.12.
    OpenUrlCrossRef
  85. ↵
    1. Malone R.W.,
    2. Jaynes D.B.,
    3. Kaspar T.C.,
    4. Thorp K.R.,
    5. Kladivko E.,
    6. Ma L.,
    7. James D.E.,
    8. Singer J.,
    9. Morin X.K.,
    10. Searchinger T.
    . 2014. Cover crops in the upper midwestern United States: Simulated effect on nitrate leaching with artificial drainage. Journal of Soil and Water Conservation 69(4):292-305, doi:10.2489/jswc.69.4.292.
    OpenUrlAbstract/FREE Full Text
  86. ↵
    1. Maresch W.,
    2. Walbridge M.,
    3. Kugler D.
    . 2008. Enhancing conservation on agricultural landscapes: A new direction for the Conservation Effects Assessment Project. Journal of Soil and Water Conservation 63(6):198A-203A, doi:10.2489/jswc.63.6.198A.
    OpenUrlFREE Full Text
  87. ↵
    1. Marks D.G.
    2001. Introduction to special section: Reynolds Creek Experimental Watershed. Water Resources Research 37(11):2817.
    OpenUrl
  88. ↵
    1. Mausbach M.J.,
    2. Dedrick A.R.
    . 2004. The length we go—measuring environmental benefits of conservation practices. Journal of Soil and Water Conservation 59(5):96A-103A.
    OpenUrlFREE Full Text
  89. ↵
    1. McCarty G.W.,
    2. Hapeman C.J.,
    3. Rice C.P.,
    4. Hively W.D.,
    5. McConnell L.L.,
    6. Sadeghi A.M.,
    7. Lang M.W.,
    8. Whitall D.R.,
    9. Bialek K.,
    10. Downey P.
    . 2014. Metolachlor metabolite (MESA) reveals agricultural nitrate-N fate and transport in Choptank River watershed. Science of the Total Environment 473-474:473-482.
    OpenUrl
  90. ↵
    1. McCarty G.W.,
    2. Reeves J.B.
    . 2006. Comparison of near infrared and mid infrared diffuse reflectance spectroscopy for field-scale measurement of soil fertility parameters. Soil Science 171:94-102.
    OpenUrl
  91. ↵
    1. McLellan E.,
    2. Schilling K.E.,
    3. Wolter C.F.,
    4. Tomer M.D.,
    5. Porter S.A.,
    6. Magner J.A.,
    7. Smith D.R.,
    8. Prokopy L.S.
    . 2018. Right practice, right place: A conservation planning toolbox for meeting water quality goals in the Corn Belt. Journal of Soil and Water Conservation 73(2):29A-34A, doi:10.2489/jswc.73.2.29A.
    OpenUrlFREE Full Text
  92. ↵
    1. Osmond D.,
    2. Meals D.,
    3. Hoag D.,
    4. Arabi M.
    1. Meals D.,
    2. Richards P.,
    3. Confesor R.,
    4. Czajkowski K.,
    5. Bonnell J.,
    6. Osmond D.,
    7. Spooner J.,
    8. Hoag D.,
    9. Spooner J.,
    10. McFarland M.,
    11. Rock Creek OH
    : NIFA-CEAP watershed project. 2012a. In How to Build Better Agricultural Conservation Programs to Protect Water Quality: The NIFA-CEAP Experience, eds. Osmond D., Meals D., Hoag D., Arabi M.. Ankeny, IA: Soil and Water Conservation Society.
  93. ↵
    1. Osmond D.,
    2. Meals D.,
    3. Hoag D.,
    4. Arabi M.
    1. Meals D.W.,
    2. Osmond D.L.,
    3. Spooner J.,
    4. Line D.E.
    . 2012b. Water quality monitoring: National Institute of Food and Agriculture–Conservation Effects Assessment Project. In How to Build Better Agricultural Conservation Programs to Protect Water Quality: The NIFA-CEAP Experience, eds. Osmond D., Meals D., Hoag D., Arabi M.. Ankeny, IA: Soil and Water Conservation Society.
  94. ↵
    1. Momm H.G.,
    2. Bingner R.L.,
    3. Wells R.R.,
    4. Porter W.S.,
    5. Yasarer L.M.,
    6. Dabney S.M.
    . 2019a. Enhanced field-scale characterization for watershed erosion assessments. Journal of Environmental Modeling and Software 117:134-148. https://doi.org/10.1016/j.envsoft.2019.03.025.
    OpenUrl
  95. ↵
    1. Momm H.G.,
    2. Bingner R.L.,
    3. Yuan Y.,
    4. Kostel J.,
    5. Monchak J.,
    6. Locke M.A.,
    7. Giley A.
    . 2016. Characterization and placement of wetlands for integrated watershed conservation practice planning. Transactions of the ASABE 59(5):1345-1357.
    OpenUrl
  96. ↵
    1. Momm H.G.,
    2. Porter W.S.,
    3. Yasarer L.M.,
    4. ElKadiri R.,
    5. Bingner R.L.,
    6. Aber J.W.
    . 2019b. Crop conversion impacts on runoff and sediment loads in the Upper Sunflower River watershed. Agricultural Water Management 217:399-412, doi:10.1016/j.agwat.2019.03.012.
    OpenUrlCrossRef
  97. ↵
    1. Momm H.G.,
    2. Yasarer L.M.W.,
    3. Bingner R.L.,
    4. Wells R.R.,
    5. Kuhnle R.A.
    . 2019c. Evaluation of sediment load reduction by natural riparian vegetation in the Goodwin Creek Watershed. Transactions of the ASABE 62(5):1325-1342. https://doi.org/10.13031/trans.13492.
    OpenUrl
  98. ↵
    1. Moore M.T.,
    2. Cooper C.M.,
    3. Smith S.,
    4. Cullum R.F.,
    5. Knight S.S.,
    6. Locke M.A.,
    7. Bennett E.R.
    . 2007. Diazinon mitigation in constructed wetlands: Influence of vegetation. Water Air and Soil Pollution 184:313-321, doi:10.1007/s11270-007-9418-9.
    OpenUrlCrossRef
  99. ↵
    1. Moorman T.B.,
    2. James D.E.,
    3. Van Horn J.,
    4. Porter S.A.,
    5. Tomer M.D.
    . 2020. Temporal trends in amount and placement of conservation practices in the South Fork of the Iowa River watershed. Journal of Soil and Water Conservation 75(3):245-253, doi:10.2489/jswc.75.3.245.
    OpenUrlAbstract/FREE Full Text
  100. ↵
    1. Moorman T.B.,
    2. Tomer M.D.,
    3. Smith D.R.,
    4. Jaynes D.B.
    . 2015. Evaluating the potential role of denitrifying bioreactors in reducing watershed-scale nitrate loads: A case study comparing three Midwestern (USA) watersheds. Ecological Engineering 75:441-448. http://dx.doi.org/10.1016/j.ecoleng.2014.11.062.
    OpenUrlCrossRef
  101. ↵
    1. Moran M.S.,
    2. Emmerich W.E.,
    3. Goodrich D.C.,
    4. Heilman P.,
    5. Holifield Collins C.,
    6. Keefer T.O.,
    7. Nearing M.A.,
    8. Nichols M.H.,
    9. Renard K.G.,
    10. Scott R.L.,
    11. Smith J.R.,
    12. Stone J.J.,
    13. Unkrich C.L.,
    14. Wong J.K.
    . 2008. Preface to special section on fifty years of research and data collection: US Department of Agriculture Walnut Gulch Experimental Watershed. Water Resources Research 44:W05S01, doi:10.1029/2007WR006083.
    OpenUrlCrossRef
  102. ↵
    1. Moriasi D.N.,
    2. Arnold J.G.,
    3. Van Liew M.W.,
    4. Bingner R.L.,
    5. Harmel R.D.,
    6. Veith T.L.
    . 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900.
    OpenUrlCrossRefWeb of Science
  103. ↵
    1. Moriasi D.N.,
    2. Arnold J.G.,
    3. Vazquez-Amábile G.G.,
    4. Engel B.A.
    . 2011a. Shallow water table depth algorithm in SWAT: Recent developments. Transactions of the ASABE 54(5):1705-1711.
    OpenUrl
  104. ↵
    1. Moriasi D.N.,
    2. King K.W.,
    3. Bosch D.D.,
    4. Bjorneberg D.L.,
    5. Teet S.,
    6. Guzman J.A.,
    7. Williams M.R.
    . 2016. Framework to parameterize and validate APEX to support deployment of the nutrient tracking tool. Agricultural Water Management 177:146-164.
    OpenUrl
  105. ↵
    1. Moriasi D.N.,
    2. Pai N.,
    3. Steiner J.L.,
    4. Gowda P.H.,
    5. Winchell M.,
    6. Rathjens H.,
    7. Starks P.J.,
    8. Verser J.A.
    . 2019. SWAT-LUT: A desktop graphical user interface for updating land use in SWAT. Journal of the American Water Resources Association 55(5):1102–1115. https://doi.org/10.1111/1752-1688.12789.
    OpenUrl
  106. ↵
    1. Moriasi D.N.,
    2. Rossi C.G.,
    3. Arnold J.G.,
    4. Tomer M.D.
    . 2012. Evaluating hydrology of the Soil and Water Assessment Tool (SWAT) with new tile drain equations. Journal of Soil and Water Conservation 67(6):513-524, doi:10.2489/jswc.67.6.513.
    OpenUrlAbstract/FREE Full Text
  107. ↵
    1. Moriasi D.N.,
    2. Starks P.J.,
    3. Steiner J.L.,
    4. Zhang X.C.,
    5. Garbrecht J.D.,
    6. Glasgow S.
    . 2020. An overview of research into conservation practice effects on soil and water resources in the Upper Washita Basin, Oklahoma, United States. Journal of Soil and Water Conservation 75(3):330-339, doi:10.2489/jswc.75.3.330.
    OpenUrlAbstract/FREE Full Text
  108. ↵
    1. Moriasi D.N.,
    2. Steiner J.L.,
    3. Arnold J.G.
    . 2011b. Sediment measurement and transport modeling: Impact of riparian and filter strip buffers. Journal of Environmental Quality 40:807–814.
    OpenUrlGeoRefPubMed
  109. ↵
    1. Moriasi D.N,
    2. Steiner J.L.,
    3. Duke S.E.,
    4. Starks P.J.,
    5. Verser A.J.
    . 2018. Reservoir sedimentation rates in the Little Washita River Experimental Watershed, Oklahoma: Measurement and controlling factors. Journal of the American Water Resources Association 54(5):1011-1023, doi:10.1111/1752-1688.12658.
    OpenUrlCrossRef
  110. ↵
    1. Morton L.W.
    2014. The science of variable climate and agro-ecosystem management. Journal of Soil and Water Conservation 69(6):207A-212A, doi:10.2489/jswc.69.6.207A.
    OpenUrlFREE Full Text
  111. ↵
    1. Mudgal A.,
    2. Baffaut C.,
    3. Anderson S.H.,
    4. Sadler E.J.,
    5. Kitchen N.R.,
    6. Sudduth K.A.,
    7. Lerch R.N.
    . 2012. Using the Agricultural Policy/Environmental eXtender to develop and validate physically based indices for the delineation of critical management areas. Journal of Soil and Water Conservation 67(4):284-299, doi:10.2489/jswc.67.4.284.
    OpenUrlAbstract/FREE Full Text
  112. ↵
    1. Osmond D.L.
    2010. USDA Water quality projects and the National Institute of Food and Agriculture Conservation Effects Assessment Project watershed studies. Journal of Soil and Water Conservation 64(6):142A-146A, doi:10.2489/jswc.65.6.142A.
    OpenUrlCrossRef
  113. ↵
    1. Osmond D.,
    2. Bolster C.,
    3. Sharpley A.,
    4. Cabrera M.,
    5. Feagley S.,
    6. Forsberg A.,
    7. Mitchell C.,
    8. Mylavarapu R.,
    9. Oldham L.,
    10. Radcliffe D.,
    11. Ramirez-Avila J.,
    12. Storm D.,
    13. Walker F.,
    14. Zhang H.
    . 2017. Southern P indices, water quality data, and modeling (APEX, APLE, and TBET) results: A comparison. Journal of Environmental Quality, doi:10.2134/jeq2016.05.0200.
    OpenUrlCrossRef
  114. ↵
    1. Osmond D.,
    2. Meals D.,
    3. Hoag D.,
    4. Arabi M.,
    5. Luloff A.,
    6. Jennings G.,
    7. McFarland M.,
    8. Spooner J.,
    9. Sharpley A.,
    10. Line D.
    . 2012. Improving conservation practices programming to protect water quality in agricultural watersheds: Lessons learned from the National Institute of Food and Agriculture–Conservation Effects Assessment Project. Journal of Soil and Water Conservation 67(5)122A–127A, doi:10.2489/jswc.67.5.122A.
    OpenUrlFREE Full Text
  115. ↵
    1. Penn C.J.,
    2. Bowen J. M.
    . 2017. Design and construction of phosphorus removal structures for improving water quality. Cham, Switzerland: Springer International Publishing AG.
  116. ↵
    1. Penn C.J.,
    2. Livingston S.,
    3. Shedekar V.,
    4. King K.,
    5. Williams M.
    . 2020. Performance of field-scale phosphorus removal structures utilizing steel slag for treatment of subsurface drainage. Water 433, doi:10.3390/w12020443.
    OpenUrlCrossRef
  117. ↵
    1. Pisani O.,
    2. Liebert D.,
    3. Bosch D.D.,
    4. Coffin A.W.,
    5. Endale D.M.,
    6. Potter T.L.,
    7. Strickland T.C.
    . 2020. Element losses from fields in conventional and conservation tillage in the Atlantic Coastal Plain, Georgia, United States. Journal of Soil and Water Conservation 75(3):376-386, doi:10.2489/jswc.75.3.376.
    OpenUrlAbstract/FREE Full Text
  118. ↵
    1. Porter S.A.,
    2. Tomer M.D.,
    3. James D.E.,
    4. Van Horn J.D.
    . 2018. Agricultural Conservation Planning Framework ArcGIS toolbox User's Manual, Version 3.0. Ames, IA: USDA Agricultural Research Service, National Laboratory for Agriculture and the Environment. https://acpf-4watersheds.org/.
  119. ↵
    1. Qi J.,
    2. Lee S.,
    3. Zhang X.,
    4. Yang Q.,
    5. McCarty G.W.,
    6. Moglen G.E.
    . 2020. Effects of surface runoff and infiltration partition methods on hydrological modeling: A comparison of four schemes in two watersheds in the Northeastern US. Journal of Hydrology 581:124415.
    OpenUrl
  120. ↵
    1. Ranjan P.,
    2. Duriancik L.F.,
    3. Moriasi D.N.,
    4. Carlson D.,
    5. Anderson K.,
    6. Prokopy L.S.
    . 2020a. Understanding the use of decision support tools by conservation professionals and their education and training needs: An application of the Reasoned Action Approach. Journal of Soil and Water Conservation 75(3):387-399, doi:10.2489/jswc.75.3.387.
    OpenUrlAbstract/FREE Full Text
  121. ↵
    1. Ranjan P.,
    2. Singh A.S.,
    3. Tomer M.D.,
    4. Lewandowski A.M.,
    5. Prokopy L.S.
    . 2019. Lessons learned from using a decision-support tool for precision placement of conservation practices in six agricultural watersheds in the US Midwest. Journal of Environmental Management 239:57-65. https://doi.org/10.1016/j.jenvman.2019.03.031.
    OpenUrl
  122. ↵
    1. Ranjan P.,
    2. Singh A.S.,
    3. Tomer M.D.,
    4. Lewandowski A.M.,
    5. Prokopy L.S.
    . 2020b. Farmer engagement using a precision approach to watershed-scale conservation planning: What do we know? Journal of Soil and Water Conservation, doi:10.2489/jswc.2020.00072.
    OpenUrlAbstract/FREE Full Text
    1. Reba M.L.,
    2. Aryal N.,
    3. Teague T.G.,
    4. Massey J.H.
    . 2020b. Initial findings from agricultural water quality monitoring at the edge-of-field in Arkansas. Journal of Soil and Water Conservation 75(3):291-303, doi:10.2489/jswc.75.3.291.
    OpenUrlAbstract/FREE Full Text
  123. ↵
    1. Richardson C.W.,
    2. Bucks D.A.,
    3. Sadler E.J.
    . 2008. The Conservation Effects Assessment Project Benchmark watersheds: Synthesis of preliminary findings. Journal of Soil and Water Conservation 63(6):590-604, doi:10.2489/jswc.63.6.590.
    OpenUrlAbstract/FREE Full Text
  124. ↵
    1. Ritchie J.C.,
    2. McCarty G.W.
    . 2003. Using 137-Cesium to understand soil carbon redistribution on agricultural watersheds. Soil Tillage Research 69:45-51.
    OpenUrl
  125. ↵
    1. Sadler E.J.,
    2. Lerch R.N.,
    3. Kitchen N.R.,
    4. Anderson S.H.,
    5. Baffaut C.,
    6. Sudduth K.A.,
    7. Prato A.A.,
    8. Kremer R.J.,
    9. Vories E.D.,
    10. Myers D.B.,
    11. Broz R.,
    12. Miles R.J.,
    13. Young F.
    . 2015. Long-term Agro-ecosystem Research in the Central Mississippi River Basin: Introduction, establishment, and overview. Journal of Environmental Quality 44:3-12.
    OpenUrl
  126. ↵
    1. Sadler E.J.,
    2. Steiner J.L.,
    3. Chen J.-S.,
    4. Wilson G.,
    5. Ross J.,
    6. Oster T.,
    7. James D.,
    8. Vandenberg B.,
    9. Cole K.,
    10. Hatfield J.
    . 2008. Sustaining the Earth's Watersheds–Agricultural Research Data System: Data development, user interaction, and operations management. Journal of Soil and Water Conservation 63(6):577-589, doi:10.2489/jswc.63.6.577.
    OpenUrlAbstract/FREE Full Text
  127. ↵
    1. Sadler E.J.,
    2. Steiner J.L.,
    3. Hatfield J.L.,
    4. James D.E.,
    5. Vandenberg B.C.,
    6. Tsegaye T.
    . 2020. STEWARDS, A decade of increasing the impact of watershed research programs. Journal of Soil and Water Conservation 75(3):50A-56A, doi:10.2489/jswc.75.3.50A.
    OpenUrlFREE Full Text
  128. ↵
    1. Settimi J.R.,
    2. Sullivan D.G.,
    3. Strickland T.C.
    . 2010. The evaluation of conservation practice placement in the Little River Experimental Watershed using geographic information systems. Journal of Soil and Water Conservation 65(3):160-167, doi:10.2489/jswc.65.3.160.
    OpenUrlAbstract/FREE Full Text
  129. ↵
    1. Sharpley A.,
    2. Kleinman P.,
    3. Baffaut C.,
    4. Beegle D.,
    5. Bolster C.,
    6. Collick A.,
    7. Easton Z.,
    8. Lory J.,
    9. Nelson N.,
    10. Osmond D.,
    11. Radcliffe D.,
    12. Veith T.,
    13. Weld J.
    . 2017. Evaluation of phosphorus site assessment tools: lessons from the USA. Journal of Environmental Quality 46:1250–1256, doi:10.2134/jeq2016.11.0427.
    OpenUrlCrossRef
  130. ↵
    1. Singer J.W.,
    2. Malone R.W.,
    3. Jaynes D.B.,
    4. Ma L.
    . 2011. Cover crop effects on nitrogen load in tile drainage from Walnut Creek Iowa using root zone water quality (RZWQ) model. Agricultural Water Management 98:1622-1628. https://doi.org/10.1016/j.agwat.2011.05.015.
    OpenUrlCrossRef
  131. ↵
    1. Smith D.R.,
    2. Harmel R.D.,
    3. Haney R.L.
    . 2020. Long-term agro-economic and environmental assessment of adaptive nutrient management on cropland fields with established structural conservation practices. Journal of Soil and Water Conservation 75(3):416-425, doi:10.2489/jswc.75.3.416.
    OpenUrlAbstract/FREE Full Text
  132. ↵
    1. Smith D.R.,
    2. King K.W.,
    3. Johnson L.,
    4. Francesconi W.,
    5. Richards P.,
    6. Baker D.,
    7. Sharpley A.N.
    . 2015. Surface runoff and tile drainage transport of phosphorus in the Midwestern United States. Journal of Environmental Quality 44:495–502, doi:10.2134/jeq2014.04.0176.
    OpenUrlCrossRefPubMed
  133. ↵
    1. Smith D.R.,
    2. Livingston S.J.
    . 2013. Managing farmed closed depressional areas using blind inlets to minimize phosphorus and nitrogen losses. Soil Use Management 29:94-102.
    OpenUrl
  134. ↵
    1. Smith D.R.,
    2. Warnemuende E.A.,
    3. Huang C.,
    4. Heathman G.C.
    . 2007. How does the first year tilling a long-term no-tillage field impact soluble nutrient losses in runoff? Soil Tillage Research 95:11-18.
    OpenUrl
  135. ↵
    1. Smith D.,
    2. White M.,
    3. McLellan E.,
    4. Pampell R.,
    5. Harmel D.
    . 2019. Conservation Practice Effectiveness (CoPE) Database. Ag Data Commons. https://doi.org/10.15482/USDA.ADC/1504544.
  136. ↵
    1. Starks P.J.,
    2. Moriasi D.N.
    . 2017. Impact of Eastern redcedar encroachment on stream discharge in the North Canadian River basin. Journal of Soil and Water Conservation 72(1):12-25, doi:10.2489/jswc.72.1.12.
    OpenUrlAbstract/FREE Full Text
  137. ↵
    1. Steiner J.L.,
    2. Engle D.M.,
    3. Xiao X.,
    4. Saleh A.,
    5. Tomlinson P.,
    6. Rice C.W.,
    7. Cole N.A.,
    8. Coleman S.W.,
    9. Osei E.,
    10. Basara J.,
    11. Middendorf G.,
    12. Gowda P.,
    13. Todd R.,
    14. Moffet C.,
    15. Anandhi A.,
    16. Starks P.J.,
    17. Ocshner T.,
    18. Reuter R.,
    19. Devlin D.
    . 2014a. Knowledge and tools to enhance resilience of beef grazing systems for sustainable animal protein production. Annals of the New York Academy of Sciences 1328:10–17, doi:10.1111/nyas.12572.
    OpenUrlCrossRef
  138. ↵
    1. Steiner J.L.,
    2. Sadler E.J.,
    3. Chen J.-S.,
    4. Wilson G.,
    5. James D.,
    6. Vandenberg B.,
    7. Ross J.,
    8. Oster T.,
    9. Cole K.
    . 2008. Sustaining the Earth's Watersheds–Agricultural Research Data System: Overview of development and challenges. Journal of Soil and Water Conservation 63(6):569-576, doi:10.2489/jswc.63.6.569.
    OpenUrlAbstract/FREE Full Text
  139. ↵
    1. Steiner J.L.,
    2. Starks P.J.,
    3. Garbrecht J.G.,
    4. Moriasi D.M.,
    5. Zhang X.-C.,
    6. Schneider J.M.,
    7. Guzman J.A.,
    8. Osei E.
    . 2014b. Long-term environmental research: The Upper Washita River experimental watersheds, Oklahoma, USA. Journal of Environmental Quality 43:1227-1238.
    OpenUrlCrossRef
  140. ↵
    1. Sudduth K.A.,
    2. Myers D.B.,
    3. Kitchen N.R.,
    4. Drummond S.T.
    . 2013. Modeling soil electrical conductivity-depth relationships with data from proximal and penetrating ECa sensors. Geoderma 199:12-21, doi.org/10.1016/j.geoderma.2012.10.006.
    OpenUrlGeoRef
  141. ↵
    1. Sullivan D.G.,
    2. Strickland T.C.,
    3. Masters M.H.
    . 2008. Satellite mapping of conservation till-age adoption in the Little River experimental watershed, Georgia. Journal of Soil and Water Conservation 63(3):112-119.
    OpenUrlAbstract/FREE Full Text
  142. ↵
    1. Thompson A.L.,
    2. Baffaut C.,
    3. Lohani S.,
    4. Duriancik L.F.,
    5. Norfleet M.L.,
    6. Ingram K.
    . 2020. Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils. Journal of Soil and Water Conservation 75(1):1-11, doi:10.2489.jswc.75.1.1.
    OpenUrlAbstract/FREE Full Text
  143. ↵
    1. Tomer M.D.
    2018. A twice-paired watershed experimental design to assess stacked practices through field-edge monitoring. Journal of Soil and Water Conservation 73(1):58-61, doi:10.2489/jswc.73.1.58.
    OpenUrlAbstract/FREE Full Text
  144. ↵
    1. Tomer M.D.,
    2. Boomer K.M.B.,
    3. Porter S.A.,
    4. Gelder B.K.,
    5. James D.E.,
    6. McLellan E.
    . 2015a. Agricultural Conservation Planning Framework: 2. Classification of riparian buffer design types with application to assess and map stream corridors. Journal of Environmental Quality 44:768–779, doi:10.2134/jeq2014.09.0387.
    OpenUrlCrossRef
  145. ↵
    1. Tomer M.D.,
    2. Locke M.A.
    . 2011. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS's conservation effects assessment project watershed studies. Water Science and Technology 64(1):300-310.
    OpenUrlAbstract/FREE Full Text
  146. ↵
    1. Tomer M.,
    2. Nelson J.
    . 2020. Measurements of landscape capacity for water retention and wetland restoration practices can inform watershed planning goals and implementation strategies. Journal of Soil and Water Conservation, doi: 10.2489/jswc.2020.00110.
    OpenUrlAbstract/FREE Full Text
  147. ↵
    1. Tomer M.D.,
    2. Porter S.A.,
    3. Boomer K.M.B.,
    4. James D.E.,
    5. Kostel J.A.,
    6. Helmers M.J.,
    7. Isenhart T.M.,
    8. McLellan E.
    . 2015b. Agricultural Conservation Planning Framework: 1. Developing multipractice watershed planning scenarios and assessing nutrient reduction potential. Journal of Environmental Quality 44(3):754–767, doi:10.2134/jeq2014.09.0386.
    OpenUrlCrossRef
  148. ↵
    1. Tomer M.D.,
    2. Porter S.A.,
    3. James D.E.,
    4. Boomer K.M.B.,
    5. Kostel J.A.,
    6. McLellan E.
    . 2013. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning. Journal of Soil and Water Conservation 68(5):113A–120A, doi:10.2489/jswc.68.5.113A.
    OpenUrlFREE Full Text
  149. ↵
    1. Tomer M.D.,
    2. Sadler E.J.,
    3. Lizotte R.E.,
    4. Bryant R.B.,
    5. Potter T.L.,
    6. Moore M.T.,
    7. Veith T.L.,
    8. Baffaut C.,
    9. Locke M.A.,
    10. Walbridge M.R.
    . 2014. A decade of conservation effects assessment research by the USDA Agricultural Research Service: Progress overview and future outlook. Journal of Soil and Water Conservation 69(5):365-373, doi:10.2489/jswc.69.5.365.
    OpenUrlAbstract/FREE Full Text
  150. ↵
    1. Tomer M.G.,
    2. Wilson C.G.,
    3. Moorman T.B.,
    4. Cole K.J.,
    5. Heer D.,
    6. Isenhart T.M
    . 2010. Source-pathway separation of multiple contaminants during a rainfall-runoff event in an artificially drained agricultural watershed. Journal of Environmental Quality 39:882–895, doi:10.2134/jeq2009.0289.
    OpenUrlCrossRefPubMed
  151. ↵
    1. Torbert H.A.,
    2. Watts D.B.
    . 2013. Impact of flue gas desulfurization gypsum application on water quality in a coastal plain soil. Journal of Environmental Quality 43(1):273-280, doi:10.2134/jeq2012.0422.
    OpenUrlCrossRef
  152. ↵
    1. Veith T.L.,
    2. Preisendanz H.E.,
    3. Elkin K.R.
    . 2020. Characterizing transport of natural and anthropogenic constituents in a long-term agricultural watershed in the northeastern United States. Journal of Soil and Water Conservation 75(3):319-329, doi:10.2489/jswc.75.3.319.
    OpenUrlAbstract/FREE Full Text
  153. ↵
    1. Walbridge M.R.,
    2. Shafer S.R.
    . 2011. A long-term agro-ecosystem research (LTAR) network for agriculture. In Proceedings of the Fourth Interagency Conference on Research in the Watersheds, Fairbanks, Alaska, September 26–30, 2011. Reston, VA: US Geological Survey.
  154. ↵
    1. Wang X.,
    2. Williams J.R.,
    3. Gassman P.W.,
    4. Baffaut C.,
    5. Izaurralde R.C.,
    6. Jeong J.,
    7. Kiniry J.R.
    . 2012. EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE 55(4):1447-1462.
    OpenUrlCrossRef
  155. ↵
    1. Warnemuende E.A.,
    2. Patterson J.P.,
    3. Smith D.R.,
    4. Huang C.
    . 2007. Effects of tilling no-till soil on losses of atrazine and glyphosate to runoff water under variable intensity simulated rainfall. Soil Tillage Research 95:19-26.
    OpenUrl
  156. ↵
    1. Singh V.P.,
    2. Frevert D.K.
    1. Williams J.R.,
    2. Izaurralde R.C.
    . 2006. The APEX model. In Watershed Models, eds. Singh V.P., Frevert D.K., p. 437-482. Boca Raton, FL: CRC Press.
  157. ↵
    1. Williams M.R.,
    2. King K.W.,
    3. Duncan E.W.,
    4. Pease L.A.,
    5. Penn C.J.
    . 2018. Fertilizer placement and tillage effects on phosphorus concentration in leachate from fine-textured soils. Soil and Tillage Research 178:130-138.
    OpenUrl
  158. ↵
    1. Williams M.R.,
    2. King K.W.,
    3. Fausey N.R.
    . 2015. Drainage water management effects on tile discharge and water quality. Agricultural Water Management 148:43-51.
    OpenUrl
  159. ↵
    1. Williams M.R.,
    2. Livingston S.J.,
    3. Penn C.J.,
    4. Gonzalez J.M.
    . 2020. Hydrologic assessment of blind inlet performance in a drained closed depression. Journal of Soil and Water Conservation 75(3):352-361, doi:10.2489/jswc.75.3.352.
    OpenUrlAbstract/FREE Full Text
  160. ↵
    1. Williamson T.N.,
    2. Dobrowolski E.G.,
    3. Meyer S.M.,
    4. Frey J.W.,
    5. Allred B.J.
    . 2019. Delineation of tile-drain networks using thermal and multispectral imagery – implications for water quantity and quality differences from paired edge-of-field sites. Journal of Soil and Water Conservation 74(1):1-11, doi:10.2489/jswc.74.1.1.
    OpenUrlAbstract/FREE Full Text
  161. ↵
    1. Wilson C.G.,
    2. Kuhnle R.A.,
    3. Bosch D.D.,
    4. Steiner J.L.,
    5. Starks P.J.,
    6. Tomer M.D.,
    7. Wilson G.V.
    . 2008. Quantifying relative contributions from sediment source in conservation effects assessment project watersheds. Journal of Soil and Water Conservation 63(6):523-532, doi:10.2489/jswc.63.6.523.
    OpenUrlAbstract/FREE Full Text
  162. ↵
    1. Wilson C.G.,
    2. Kuhnle R.A.,
    3. Dabney S.M.,
    4. Lerch R.N.,
    5. Huang C.H.,
    6. King K.W.,
    7. Livingston S.J.
    . 2014. Fine sediment sources in Conservation Effects Assessment Project watersheds. Journal of Soil and Water Conservation 69(5):402-413, doi:10.2489/jswc.69.5.402.
    OpenUrlAbstract/FREE Full Text
  163. ↵
    1. Yasarer L.M.W.,
    2. Bingner R.L.,
    3. Garbrecht J.D.,
    4. Locke M.A.,
    5. Lizotte R.E.,
    6. Momm H.G.,
    7. Busteed P.R.
    . 2017. Climate change impacts on runoff, sediment, and nutrient loads in an agricultural watershed in the Lower Mississippi River Basin. Applied Engineering in Agriculture 33(3):379-392. https://doi.org/10.13031/aea.12047.
    OpenUrl
  164. ↵
    1. Yasarer L.M.W,
    2. Bingner R.,
    3. Momm H.G.
    . 2018. Characterizing ponds in a watershed simulation and evaluating their influence on streamflow in a Mississippi Watershed. Hydrological Sciences Journal 62(2):302-311, doi:10.1080/02626667.2018.1425954.
    OpenUrlCrossRef
  165. ↵
    1. Yuan Y.,
    2. Locke M.A.,
    3. Bingner R.L.
    . 2008. Annualized agricultural non-point-source model application for Mississippi Delta Beasley Lake watershed conservation practices assessment. Journal of Soil and Water Conservation 63(6):542-551, doi:10.2489/jswc.63.6.542.
    OpenUrlAbstract/FREE Full Text
  166. ↵
    1. Zablotowicz R.M.,
    2. Zimba P.V.,
    3. Locke M.A.,
    4. Lizotte R.E.,
    5. Knight S.S.,
    6. Gordon R.E.
    . 2010. Effects of land management practices on water quality in Mississippi Delta oxbow lakes: Biochemical and microbiological aspects. Agriculture, Ecosystems, and Environment 139:214-223.
    OpenUrl
  167. ↵
    1. Zhang X.C.,
    2. Zhang G.H.,
    3. Garbrecht J.D.,
    4. Steiner J.L.
    . 2015. Dating sediment in a fast sedimentation reservoir using cesium-137 and lead-210. Soil Science Society of America Journal 79:948-956, doi:10.2136/sssaj2015.01.0021.
    OpenUrlCrossRefGeoRef
  168. ↵
    1. Zhang X.C.,
    2. Zhang G.H.,
    3. Liu B.L.,
    4. Liu B.
    . 2016. Using Cesium-137 to quantify sediment source contribution and uncertainty in a small watershed. Catena 140:116–124, doi:10.1016/j.catena.2016.01.021.
    OpenUrlCrossRef
  169. ↵
    1. Zobeck T.M.,
    2. Steiner J.L.,
    3. Stott D.E.,
    4. Duke S. E.,
    5. Starks P.J.,
    6. Moriasi D.N.,
    7. Karlen D.L.
    . 2015. Soil quality index comparisons using Fort Cobb Oklahoma watershed-scale land management data. Soil Science Society of America Journal 79:224-238, doi.10.2136/sssaj2014.06.0257.
    OpenUrlCrossRef
  170. ↵
    1. Sparks D.L.
    1. Zoca S.M.,
    2. Penn C.
    . 2017. An important tool with no instruction manual: A review of gypsum use in agriculture. In Advances in Agronomy, Vol. 144, ed. Sparks D.L., 1-44. Burlington: Academic Press.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (3)
Journal of Soil and Water Conservation
Vol. 75, Issue 3
May/June 2020
  • Table of Contents
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
8 + 10 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
Daniel N. Moriasi, Lisa F. Duriancik, E. John Sadler, Teferi Tsegaye, Jean L. Steiner, Martin A. Locke, Timothy C. Strickland, Deanna L. Osmond
Journal of Soil and Water Conservation May 2020, 75 (3) 57A-74A; DOI: 10.2489/jswc.75.3.57A

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years
Daniel N. Moriasi, Lisa F. Duriancik, E. John Sadler, Teferi Tsegaye, Jean L. Steiner, Martin A. Locke, Timothy C. Strickland, Deanna L. Osmond
Journal of Soil and Water Conservation May 2020, 75 (3) 57A-74A; DOI: 10.2489/jswc.75.3.57A
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • SUMMARY OF PAPERS IN THE SPECIAL ISSUE
    • SUMMARY OF MEASURED AND MODELED EFFECTS OF CONSERVATION PRACTICES IN CONSERVATION EFFECTS ASSESSMENT PROJECT WATERSHEDS
    • OTHER IMPACTS OF THE CONSERVATION EFFECTS ASSESSMENT PROJECT
    • CONSERVATION EFFECTS ASSESSMENT PROJECT IMPACTS AS FEEDBACK TO IMPROVE AGRICULTURAL CONSERVATION PROGRAMS
    • FUTURE CONSERVATION EFFECTS ASSESSMENT PROJECT DIRECTIONS
    • ACKNOWLEDGEMENTS
    • Footnotes
    • REFERENCES
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • Making conservation count: The importance of assessing resources and documenting outcomes to USDA
  • Google Scholar

More in this TOC Section

A Section

  • How much grass will grow on your rangelands this year? Grass-Cast sheds light on the question!
  • Increasing agricultural conservation outreach through social science
  • Forest management and biochar for continued ecosystem services
Show more A Section

Research Introduction

  • Assessing cultivated cropland inherent vulnerability to sediment and nutrient losses with the Soil Vulnerability Index
  • Emerging nutrient management databases and networks of networks will have broad applicability in future machine learning and artificial intelligence applications in soil and water conservation
Show more Research Introduction

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society