Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Changes in runoff and sediment load of the Huangfuchuan River following a water and soil conservation project

M.Y. Xie, Z.P. Ren, Z.B. Li, P. Li, P. Shi and X.M. Zhang
Journal of Soil and Water Conservation September 2020, 75 (5) 590-600; DOI: https://doi.org/10.2489/jswc.2020.00012
M.Y. Xie
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z.P. Ren
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Z.B. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Shi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X.M. Zhang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Borrelli P.,
    2. Robinson D.A.,
    3. Fleischer L.R.,
    4. Lugato E.,
    5. Ballabio C.,
    6. Alewell C.,
    7. Meusburger K.,
    8. Modugno S.,
    9. Schütt B.,
    10. Ferro V.,
    11. Bagarello V.,
    12. Oost K.V.,
    13. Montanarella L.,
    14. Panagos P.
    . 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8(1):1–13.
    OpenUrl
  2. ↵
    1. Buendia C.,
    2. Bussi G.,
    3. Tuset J.,
    4. Vericat D.,
    5. Sabater S.,
    6. Palau A.,
    7. Batalla R.J.
    . 2016. Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. 540:144–157.
    OpenUrl
  3. ↵
    1. Duan L.X.,
    2. Huang M.B.,
    3. Zhang L.D.
    . 2016. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. Journal of Hydrology 537:356–366.
    OpenUrl
  4. ↵
    1. Feng X.M.,
    2. Fu B.J.,
    3. Piao S.L.,
    4. Wang S.,
    5. Ciais P.,
    6. Zeng Z.Z.,
    7. Lü Y.H.,
    8. Zeng Y.,
    9. Li Y.,
    10. Jiang X.H.,
    11. Wu B.F.
    . 2016. Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change 6(11):1019–1022.
    OpenUrl
  5. ↵
    1. Fu B.J.
    1989. Soil erosion and its control in the Loess Plateau of China. Soil Use and Management 5(2):76–82.
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Gang C.C.,
    2. Zhao W.,
    3. Zhao T.,
    4. Zhang Y.,
    5. Gao X.R.,
    6. Wen Z.M.
    . 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment 645:827–836.
    OpenUrl
  7. ↵
    1. Gao P.,
    2. Deng J.C.,
    3. Chai X.K.,
    4. Mu X.M.,
    5. Zhao G.J.,
    6. Shao H.B.,
    7. Sun W.Y.
    . 2017. Dynamic sediment discharge in the Hekou-Longmen region of Yellow River and soil and water conservation implications. Science of the Total Environment 578:56–66.
    OpenUrl
  8. ↵
    1. Gao G.Y.,
    2. Fu B.J.,
    3. Zhang J.J.,
    4. Ma Y.,
    5. Sivapaland M.
    . 2018. Multiscale temporal variability of flow-sediment relationships during the 1950s–2014 in the Loess Plateau, China. Journal of Hydrology 563:609–619.
    OpenUrl
  9. ↵
    1. Gao H.D.,
    2. Li Z.B.,
    3. Li P.,
    4. Jia L.L.
    . 2012. Quantitative evaluation of slope stability on check-dams at different siltation heights. Transactions of the Chinese Society of Agricultural Engineering 2:127–132 (In Chinese).
    OpenUrl
  10. ↵
    1. Gao P.,
    2. Mu X.M.,
    3. Wang F.,
    4. Li R.
    . 2011. Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrology and Earth System Sciences 15:1–10.
    OpenUrlCrossRef
  11. ↵
    1. Guo Y.,
    2. Huang S.Z.,
    3. Huang Q.,
    4. Wang H.,
    5. Fang W.,
    6. Yang Y.,
    7. Wang L.
    . 2019. Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. Journal of Hydrology 568:904–918.
    OpenUrl
  12. ↵
    1. Guo Z.L.,
    2. Ma M.J.,
    3. Cai C.F.,
    4. Wu Y.W.
    . 2018. Combined effects of simulated rainfall and overland flow on sediment and solute transport in hillslope erosion. Journal of Soils and Sediments 18:1120–1132.
    OpenUrl
  13. ↵
    1. Hasan E.,
    2. Tarhule A.,
    3. Kirstetter P.E.,
    4. Clark R.,
    5. Hong Y.
    . 2018. Runoff sensitivity to climate change in the Nile River basin. Journal of Hydrology 561:312–321.
    OpenUrl
  14. ↵
    1. Huang J.B.,
    2. Hinokidani O.,
    3. Yasuda H.,
    4. Ojha C.S.P.,
    5. Kajikawa Y.,
    6. Li S.Q.
    . 2013. Effects of the check dam system on water redistribution in the Chinese Loess Plateau. Journal of Hydrologic Engineering 18(8):929–940.
    OpenUrl
  15. ↵
    1. Pachauri R.K.,
    2. Meyer L.A.
    1. IPCC (Intergovernmental Panel on Climate Change)
    . 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Pachauri R.K., Meyer L.A.. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  16. ↵
    1. Jain S.,
    2. Shukla S.,
    3. Wadhvani R.
    . 2018. Dynamic selection of normalization techniques using data complexity measures. Expert Systems with Applications 106:252–262.
    OpenUrl
  17. ↵
    1. Kumar N.,
    2. Tischbein B.,
    3. Kusche J.,
    4. Laux P.,
    5. Beg M.K.,
    6. Bogardi J.J.
    . 2017. Impact of climate change on water resources of upper Kharun catchment in Chhattisgarh, India. Journal of Hydrology: Regional Studies. 13:189–207.
    OpenUrl
  18. ↵
    1. Kutta E.,
    2. Hubbart J.A.,
    3. Svoma B.M.,
    4. Eichler T.,
    5. Lupo A.R.
    . 2017. Symmetric and asymmetric components of anomalous tropospheric-mean horizontal fluxes of latent and sensible heat associated with ENSO events of variable magnitude. Atmospheric Research 198:173–184.
    OpenUrl
  19. ↵
    1. Li Z.Y.,
    2. Fang H.Y.
    . 2016. Impacts of climate change on water erosion: A review. Earth-Science Reviews 163:94–117.
    OpenUrl
  20. ↵
    1. Li Z.W.,
    2. Liu C.,
    3. Dong Y.T.,
    4. Chang X.F.,
    5. Nie X.D.,
    6. Liu L.,
    7. Xiao H.B.,
    8. Lu Y.M.,
    9. Zeng G.M.
    . 2017a. Response of soil organic carbon and nitrogen stocks to soil erosion and land use types in the Loess hilly-gully region of China. Soil and Tillage Research 166(1–9).
  21. ↵
    1. Li P.F.,
    2. Mu X.M.,
    3. Holden J.,
    4. Wu Y.P.,
    5. Irvine B.,
    6. Wang F.,
    7. Gao P.,
    8. Zhao G.J.,
    9. Sun W.Y.
    . 2017b. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth-Science Reviews 170:17–30.
    OpenUrl
  22. ↵
    1. Li T.,
    2. Wang S.,
    3. Liu Y.X.,
    4. Fu B.J.,
    5. Zhao W.W.
    . 2018. Driving forces and their contribution to the recent decrease in sediment flux to ocean of major rivers in China. Science of the Total Environment 634:534–541.
    OpenUrl
  23. ↵
    1. Li W.,
    2. Zhai P.M.,
    3. Cai J.H.
    . 2011. Research on the relationship of ENSO and the frequency of extreme precipitation events in China. Advances in Climate Change Research 2:101–107.
    OpenUrl
  24. ↵
    1. Li Z.,
    2. Zheng F.L.,
    3. Liu W.Z.,
    4. Jiang D.J.
    . 2012. Spatially downscaling GCMs outputs to project changes in extreme precipitation and temperature events on the Loess Plateau of China during the 21st century. Global and Planetary Change 82–83:65–73.
    OpenUrl
  25. ↵
    1. Liu J.H.,
    2. Wang G.Q.,
    3. Li H.H.,
    4. Gong J.G.,
    5. Han J.Y.
    . 2013. Water and sediment evolution in areas with high and coarse sediment yield of the Loess Plateau. International Journal of Sediment Research 28(4):448–457.
    OpenUrl
  26. ↵
    1. Maetens W.,
    2. Poesen J.,
    3. Vanmaercke M.
    . 2012. How effective are soil conservation techniques in reducing plot runoff and soil loss in Europe and the Mediterranean? Earth-Science Reviews 115:21–36.
    OpenUrlGeoRef
    1. Mann H.B.,
    2. Whitney D.R.
    . 1947. On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics 18:50–60.
    OpenUrl
  27. ↵
    1. Mi Z.J.,
    2. Mu X.M.,
    3. Zhao G.J.
    . 2015. Extraction of check dam based on multi-sources data in the Huangfuchuan watershed. Arid Land Geography 38(1):52–59 (In Chinese).
    OpenUrl
  28. ↵
    1. Mohammadi M.,
    2. Shabanpour M.,
    3. Mohammadi M.H.,
    4. Davatgar N.
    . 2019. Characterizing spatial variability of soil textural fractions and fractal parameters derived from particle size distributions. Pedosphere 29(2):224–234.
    OpenUrl
    1. Naik P.K.,
    2. Jay D.A.
    . 2011. Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment transport. Journal of Hydrology 404:259–277.
    OpenUrlCrossRefGeoRef
  29. ↵
    1. Nalley D.,
    2. Adamowski J.,
    3. Biswas A.,
    4. Gharabaghi B.,
    5. Hu W.
    . 2019. A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. Journal of Hydrology 574:288–307.
    OpenUrl
  30. ↵
    1. Pimentel D.
    2006. Soil erosion: A food and environmental threat. Environment, Development and Sustainability 8:119–137.
    OpenUrlCrossRef
  31. ↵
    1. Prosdocimi M.,
    2. Jordán A.,
    3. Tarolli P.,
    4. Keesstra S.,
    5. Novara A.,
    6. Cerdà A.
    . 2016. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of the Total Environment 547:323–330.
    OpenUrl
  32. ↵
    1. Qi F.,
    2. Zhang R.H.,
    3. Liu X.,
    4. Niu Y.,
    5. Zhang H.D.,
    6. Li H.,
    7. Li J.Z.,
    8. Wang B.Y.,
    9. Zhang G.C.
    . 2018. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil and Tillage Research 184:45–51.
    OpenUrl
  33. ↵
    1. Remo J.W.F.,
    2. Ickes B.S.,
    3. Ryherd J.K.,
    4. Guida R.J.,
    5. Therrell M.D.
    . 2018. Assessing the impacts of dams and levees on the hydrologic record of the Middle and Lower Mississippi River, USA. Geomorphology 313:88–100.
    OpenUrl
  34. ↵
    1. Reshmidevi T.V.,
    2. Kumar D.N.,
    3. Mehrotra R.,
    4. Sharma A.
    . 2018. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology 556:1192–1204.
    OpenUrl
  35. ↵
    1. Shi H.,
    2. Shao M.A.
    . 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments 45(1):9–20.
    OpenUrlCrossRefWeb of Science
  36. ↵
    1. Shi P.,
    2. Zhang Y.,
    3. Li P.,
    4. Li Z.B.,
    5. Yu K.X.,
    6. Ren Z.P.,
    7. Xu G.C.,
    8. Cheng S.D.,
    9. Wang F.C.,
    10. Ma Y.Y.
    . 2019. Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau, China. Science of the Total Environment 652:505–512.
    OpenUrl
  37. ↵
    1. Sun W.Y.,
    2. Shao Q.Q.,
    3. Liu J.Y.,
    4. Zhai J.
    . 2014. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 121:151–163.
    OpenUrlCrossRefGeoRef
  38. ↵
    1. Sun W.Y.,
    2. Song X.Y.,
    3. Mu X.M.,
    4. Gao P.,
    5. Wang F.,
    6. Zhao G.J.
    . 2015. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology 209–210:87–99.
    OpenUrl
  39. ↵
    1. Tang Q.,
    2. Wang S.,
    3. Fu B.J.,
    4. Wang Y.F.,
    5. Gao G.Y.
    . 2018. Check dam infilling archives elucidate historical sedimentary dynamics in a semiarid landscape of the Loess Plateau, China. Ecological Engineering 118:161–170.
    OpenUrl
  40. ↵
    1. Wang S.,
    2. Fu B.J.,
    3. Liang W.,
    4. Liu Y.,
    5. Wang Y.F.
    . 2017a. Driving forces of changes in the water and sediment relationship in the Yellow River. Science of the Total Environment 576:453–461.
    OpenUrl
  41. ↵
    1. Wang S.,
    2. Fu B.J.,
    3. Piao S.L.,
    4. Lü Y.H.,
    5. Philippe C.,
    6. Feng X.M.,
    7. Wang Y.F.
    . 2016a. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience 9: 38–41.
    OpenUrl
  42. ↵
    1. Wang Z.J.,
    2. Jiao J.Y.,
    3. Rayburg S.,
    4. Wang Q.L.,
    5. Su Y.
    . 2016b. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena 141:109–116.
    OpenUrl
  43. ↵
    1. Wang J.T.,
    2. Peng J.,
    3. Zhao M.Y.,
    4. Liu Y.X.,
    5. Chen Y.Q.
    . 2017b. Significant trade-off for the impact of Grain-for-Green Programmer on ecosystem services in North-western Yunnan, China. Science of the Total Environment 574:57–64.
    OpenUrl
  44. ↵
    1. Wang X.H.,
    2. Zhong S.Y.,
    3. Bian X.D.,
    4. Yu L.J.
    . 2019. Impact of 2015–2016 El Niño and 2017–2018 La Niña on PM2.5 concentrations across China. Atmospheric Environment 208:61–73.
    OpenUrl
  45. ↵
    1. Wang G.L.,
    2. Zhou S.L.,
    3. Zhao Q.G.
    . 2005. Volume fractal dimension of soil particles and its applications to land use. Acta Pedologica Sinica 42(4):545–550 (In Chinese).
    OpenUrl
  46. ↵
    1. Wei W.,
    2. Chen D.,
    3. Wang L.X.,
    4. Daryanto S.,
    5. Chen L.D.,
    6. Yu Y.,
    7. Lu Y.L.,
    8. Sun G.,
    9. Feng T.J.
    . 2016a. Global synthesis of the classifications, distributions, benefits and issues of terracing. Earth-Science Reviews 159:388–403.
    OpenUrl
  47. ↵
    1. Wei Y.H.,
    2. Jiao J.Y.,
    3. Zhao G.J.,
    4. Zhao H.K.,
    5. He Z.,
    6. Mu X.M.
    . 2016b. Spatial-temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950-2013. Catena 140:105–115.
    OpenUrl
  48. ↵
    1. Wilcoxon F.
    1945. Individual comparisons by ranking methods. International Biometric Society 1:80–83.
    OpenUrl
  49. ↵
    1. Wu J.W.,
    2. Miao C.Y.,
    3. Wang Y.M.,
    4. Duan Q.Y.,
    5. Zhang X.M.
    . 2017. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. Journal of Hydrology 545:263–275.
    OpenUrl
  50. ↵
    1. Xie Y.B.
    2009. Water Information Technology, 197–198. Beijing: China Water and Power Press.
  51. ↵
    1. Xin Z.B.,
    2. Yu B.F.,
    3. Han Y.G.
    . 2015. Spatiotemporal variations in annual sediment yield from the middle Yellow River, China, 1950–2010. Journal of Hydrologic Engineering 20(8):1–15.
    OpenUrl
  52. ↵
    1. Xu X.Z.,
    2. Zhang H.W.,
    3. Zhang O.Y.
    . 2004. Development of check-dam systems in gullies on the Loess Plateau, China. Environmental Science and Policy 7:79–86.
    OpenUrlGeoRef
  53. ↵
    1. Yao H.F.,
    2. Shi C.X.,
    3. Shao W.W.,
    4. Bai J.B.,
    5. Yang H.
    . 2016. Changes and influencing factors of the sediment load in the Xiliugou basin of the upper Yellow River, China. Catena 142:1–10.
    OpenUrl
  54. ↵
    1. Young R.A.,
    2. Onstad C.A.
    . 1978. Characterization of rill and interrill eroded soil. Soil and Water Division of ASAE 21(6):1126–1130.
    OpenUrl
  55. ↵
    1. Zhang L.T.,
    2. Li Z.B.,
    3. Wang H.,
    4. Xiao J.B.
    . 2016. Influence of intra-event-based flood regime on sediment flow behavior from a typical agro-catchment of the Chinese Loess Plateau. Journal of Hydrology 538:71–81.
    OpenUrl
  56. ↵
    1. Zhang J.J.,
    2. Zhang X.P.,
    3. Li R.,
    4. Chen L.L.,
    5. Lin P.F.
    . 2017. Did streamflow or suspended sediment concentration changes reduce sediment load in the middle reaches of the Yellow River? Journal of Hydrology 546:357–369.
    OpenUrl
  57. ↵
    1. Zhang B.J.,
    2. Zhang G.H.,
    3. Yang H.Y.,
    4. Wang H.
    . 2019a. Soil resistance to flowing water erosion of seven typical plant communities on steep gully slopes on the Loess Plateau of China. Catena 173:375–383.
    OpenUrl
  58. ↵
    1. Zhang X.,
    2. Zhao W.W.,
    3. Wang L.X.,
    4. Liu Y.X.,
    5. Liu Y.,
    6. Feng Q.
    . 2019b. Relationship between soil water content and soil particle size on typical slopes of the Loess Plateau during a drought year. Science of the Total Environment 648:943–954.
    OpenUrl
  59. ↵
    1. Zhang Y.Y.,
    2. Zhong D.Y.,
    3. Wu B.S.
    . 2013. Multiple temporal scale relationships of bankfull discharge with streamflow and sediment transport in the Yellow River in China. International Journal of Sediment Research 28(4):496–510.
    OpenUrl
  60. ↵
    1. Zhao G.J.,
    2. Klik A.,
    3. Mu X.M.,
    4. Wang F.,
    5. Gao P.,
    6. Sun W.Y.
    . 2015. Sediment yield estimation in a small watershed on the northern Loess Plateau, China. Geomorphology 241:343–352.
    OpenUrlGeoRef
  61. ↵
    1. Zhao G.J.,
    2. Kondolf G.M.,
    3. Mu X.M.,
    4. Han M.W.,
    5. He Z.,
    6. Rubin Z.,
    7. Wang F.,
    8. Gao P.,
    9. Sun W.Y.
    . 2017. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 148:126–137.
    OpenUrl
    1. Zheng M.G.
    2018. A spatially invariant sediment rating curve and its temporal change following watershed management in the Chinese Loess Plateau. Science of the Total Environment 630: 1453–1463.
    OpenUrl
  62. ↵
    1. Zhu D.Y.,
    2. Xiong K.N.,
    3. Xiao H.,
    4. Gu X.P.
    . 2019. Variation characteristics of rainfall erosivity in Guizhou Province and the correlation with the El Niño Southern Oscillation. Science of the Total Environment 691:835–847.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (5)
Journal of Soil and Water Conservation
Vol. 75, Issue 5
September/October 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Changes in runoff and sediment load of the Huangfuchuan River following a water and soil conservation project
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 9 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Changes in runoff and sediment load of the Huangfuchuan River following a water and soil conservation project
M.Y. Xie, Z.P. Ren, Z.B. Li, P. Li, P. Shi, X.M. Zhang
Journal of Soil and Water Conservation Sep 2020, 75 (5) 590-600; DOI: 10.2489/jswc.2020.00012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Changes in runoff and sediment load of the Huangfuchuan River following a water and soil conservation project
M.Y. Xie, Z.P. Ren, Z.B. Li, P. Li, P. Shi, X.M. Zhang
Journal of Soil and Water Conservation Sep 2020, 75 (5) 590-600; DOI: 10.2489/jswc.2020.00012
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Comparing the short- and long-term impacts of subsurface drainage installation on soil physical and biological properties
  • Patterns and associations between dominant crop productions and water quality in an irrigated watershed
  • Estimating landowners’ willingness to accept payments for nature-based solutions in eastern North Carolina for flood hazard mitigation using the contingent valuation method
Show more Research Section

Similar Articles

Keywords

  • flood season
  • runoff
  • sediment composition
  • sediment load

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society