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What drives voluntary adoption of farming 
practices that can abate nutrient pollution?
Z.R. Luther, S.M. Swinton, and B. Van Deynze

Abstract: Agricultural nutrient runoff and leaching into groundwater can impose societal 
costs that may be external to farmer decisions. Farmers can reduce the environmental impact 
of nutrient losses by adopting conservation and precision nutrient diagnostic and application 
practices. We examine the determinants of adoption decisions of such practices using mail 
survey data from a large, stratified sample of corn (Zea mays L.) and soybean (Glycine max 
[L.] Merr.) farmers in the US eastern Corn Belt. Via an ordered probit that captures both 
adoption and intent to adopt eight different practices, we evaluate a broad range of potential 
factors driving adoption of conservation and precision agriculture practices. We find that 
farmer objectives other than income, such as preferences for environmental amenities or 
social status, were important adoption drivers for conservation and precision technologies, 
respectively. Livestock farms had a distinct adoption profile, with greater likelihood to adopt 
cover cropping and less to adopt precision technologies. Farmers who participated in work-
ing lands programs were more likely to adopt both cover cropping and precision soil testing 
technologies. Policies and messaging to encourage voluntary adoption of practices to reduce 
agricultural nutrient loss should account for farmer objectives, farming systems, and existing 
policy incentives.

Key words: agriculture—conservation practices—nutrient pollution—precision agricul-
ture—technology adoption

Farmers can abate nutrient pollution 
by adopting a variety of practices and 
technologies; identifying which farmers 
are drawn to specific pollution-abating 
practices and technologies can improve 
the efficiency of conservation policy and 
education. Agricultural nutrient loss entails 
costs both public and private. Nutrient 
runoff leads to hypoxia and eutrophication 
in bodies of water both near and far from 
the initial agricultural site (Selman and 
Greenhalgh 2009). In addition to surface 
movement, nitrate nitrogen (NO3-N) and 
phosphorus (P) move in dissolved form into 
ground water (King et al. 2015). Soil erosion 
imposes private costs by degrading the qual-
ity and quantity of topsoil, as well as external 
social costs, such as for dredging of navigable 
waterways (Pimentel et al. 1995). 

Crop farmers can reduce their contri-
butions to soil nutrient loss by adopting a 

variety of distinct management practices 
that abate nutrient pollution relative to their 
existing activities. Conservation practices, 
such as cover cropping, conservation tillage, 
and edge-of-field buffer strips, aim primar-
ily for environmental benefits. Precision 
agriculture practices, which either aid in 
diagnosing nutrient needs (“diagnostic prac-
tices”) or in applying nutrients at optimal 
rates (“application practices”), chiefly target 
augmenting crop yields and providing cost 
savings to farmers. However, they also have 
the potential to reduce nutrient pollution 
by improving the efficiency of when, where, 
and how much nutrients are applied (Finger 
et al. 2019). In order to inform the design 
of programs encouraging wider adoption 
of these practices, it is important for poli-
cymakers to understand the traits of farmers 
who gravitate toward different practices, and 
why they do so. Such understanding can 

allow policymakers to target scarce resources 
toward farmers who are most likely to be 
responsive to tailored messages or conserva-
tion programs.

A large body of literature analyzes why 
farmers adopt technologies, including con-
servation practices (Feder et al. 1985; Feder 
and Umali 1993; Abadi Ghadim and Pannell 
1999; Daberkow and McBride 2003; Pannell 
et al. 2006; Knowler and Bradshaw 2007; 
Prokopy et al. 2008, 2019; Baumgart-Getz 
et al. 2012; Pierpaoli et al. 2013). The liter-
ature generally highlights the importance of 
five broad categories of adoption drivers: (1) 
farmer traits, (2) farm resources, (3) technol-
ogy traits, (4) information sources, and (5) 
social networks. 

In elaborating upon these categories, we 
posit that three classes of drivers are particu-
larly relevant in the development of targeted 
policy and education: (1) farmer objectives, 
(2) technology compatibility with existing 
systems, and (3) policy incentives. Among 
farmer objectives, much is known about 
income-related motives (including risk-ad-
justed expected utility) (Feder et al. 1985; 
Feder and Umali 1993), but the literature 
about nonmonetary drivers, such as environ-
mental ethic or social status, is still emerging 
(Pannell et al. 2006; Prokopy et al. 2008, 2019; 
Chouinard et al. 2008; Baumgart-Getz et al. 
2012). Likewise, the effects of farming system 
compatibility with specific practices, particu-
larly livestock versus crop-oriented farming 
systems, is less studied (with the notable 
exception of Traxler and Byerlee 1993). 
Greater understanding of these classes of driv-
ers can facilitate messaging about a practice’s 
benefits tailored to a farmer’s specific opera-
tion and motivations. Finally, while there are 
many studies of policy effects (Lichtenberg 
and Smith-Ramirez 2011; Mezzatesta et al. 
2013; Claassen et al. 2014; Fleming 2017), 
few general studies of farm technology 
adoption drivers test for the effects of policy 
variables. We aim to test for the importance 
of these three types of adoption drivers, while 
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controlling for other important drivers iden-
tified in previous studies, in the adoption of 
both conservation practices and precision 
agriculture technologies. By bringing to bear 
a large cross-sectional data set from the US 
eastern Corn Belt that explores four levels of 
adoption commitment, we draw on a strong 
data set. 

The rest of this paper unfolds by drawing 
lessons from the existing farm technology 
adoption literature. That literature review 
informs the key categories of adoption 
drivers as well as expectations about drivers 
particularly relevant to the adoption of eight 
specific practices that can abate agricultural 
nutrient pollution. We then introduce the 
data, gathered via a producer survey covering 
four midwestern states; develop empirically 
testable hypotheses; and present our econo-
metric methods. Finally, we present the 
results of our empirical model with hypoth-
esis tests, discuss these results, and provide 
insights to inform the design of policies that 
more efficiently encourage farmer adoption 
of nutrient loss abatement practices. 

Lessons from the Literature. The literature 
on technology adoption in agriculture is vast 
and has spawned several excellent reviews 
(Feder et al. 1985; Feder and Umali 1993), 
including subcategory on the adoption of 
conservation practices (Pannell et al. 2006; 
Knowler and Bradshaw 2007; Prokopy et 
al. 2008, 2019; Baumgart-Getz et al. 2012). 
Virtually all approaches to understanding 
agricultural technology adoption view it as a 
decision process that is shaped by the farm-
er’s objectives, resources, and the traits of the 
specific technology or practice in play. 

As the literature on farmer objectives has 
evolved, it has recognized a greater diversity 
of farmer objectives. The literature from the 
1970s and 1980s that focused on adoption 
of high-yielding crop varieties tended to 
assume that farmers sought to build wealth, 
although they might be aiming to optimize 
a risk-weighted, expected utility function 
defined over monetary returns (Feder et al. 
1985; Feder and Umali 1993). This implied 
that relevant drivers of adoption included 
attitudes toward income risk, as well as 
factors affecting profitability and riskiness 
inherent in a technology. More recent lit-
erature, especially that by sociologists and 
economists studying conservation technolo-
gies, has identified a broader set of objectives 
that shape farmer adoption choices. Among 
these multiple objectives are environmental 

stewardship (Maybery et al. 2005; Pannell 
et al. 2006; Prokopy et al. 2008, 2019; 
Chouinard et al. 2008; Greiner and Gregg 
2011; Baumgart-Getz et al. 2012; Ranjan 
et al. 2019), social approval, personal ethics, 
and work-life balance (Maybery et al. 2005; 
Pannsell et al. 2006; Greiner and Gregg 2011; 
Roesch-McNally et al. 2018). One common 
term to describe the nonmonetary objec-
tives is “attitudes,” which have been widely 
shown to influence farm technology choices, 
especially related to conservation practices 
(Prokopy et al. 2008, 2019; Baumgart-Getz 
et al. 2012).

Farmer and farm household traits also 
tend to shape the adoption of conservation 
practices. One is age: older farmers tend to 
be less inclined to adopt conservation prac-
tices (Feder and Umali 1993; Prokopy et 
al. 2008, 2019; Baumgart-Getz et al. 2012). 
A second is education: higher levels tend 
to favor adoption (Feder and Umali 1993; 
Prokopy et al. 2008, 2019), especially of 
more complex technologies (Pannell et al. 
2006). For labor-demanding technologies, 
larger households with more working-age 
members facilitate adoption of new prac-
tices (Feder et al. 1985; Prokopy et al. 2008). 
Particularly for the adoption of technologies 
that are costly, such as those embodied in 
capital equipment, existing wealth, off-farm 
income, and access to credit tend to favor 
adoption of new technologies (Feder et al. 
1985; Knowler and Bradshaw 2007). The 
literature also highlights the influence of 
social networks (Micheels and Nolan 2016; 
Hunecke et al. 2017), both to assist with 
learning (Besley and Case 1993; Conley and 
Udry 2010) and to build household support 
related to costly adoption decisions that are 
difficult to test ahead of time and costly to 
undo (Pannell et al. 2006).

Farm biophysical resources also tend have 
a strong effect on adoption of agricultural 
technologies, including conservation ones. 
Larger farms tend to adopt new technologies 
more readily for a variety of reasons, includ-
ing greater access to capital and greater scale 
(which augments benefits for a profitable 
technology and spreads fixed costs like equip-
ment and information acquisition) (Feder 
et al. 1985; Knowler and Bradshaw 2007; 
Pannell et al. 2006; Prokopy et al. 2008, 2019; 
Finger et al. 2019). Better resource qual-
ity—such as soil fertility or access to clean 
water—also favors adoption of new technol-
ogies, particularly productive ones (Feder et 

al. 1985) and technologies that rely on a par-
ticular resource (e.g., irrigation-dependent 
crops on irrigation) (Feder and Umali 1993). 
Land tenure security and the expectation of 
passing on the farm to the next generation 
tend to favor the adoption of conserva-
tion technologies that gradually build up a 
farm resource (like soil quality) (Feder and 
Umali 1993; Gebremedhin and Swinton 
2003; Pannell et al. 2006; Baumgart-Getz 
et al. 2012). Finally, the nature of the farm’s 
agricultural system tends to affect its com-
patibility with certain alternative practices. 
For example, farms that have livestock may 
value forage crops or forage byproducts more 
than crop farms, which can make them less 
prone to adopt technologies that substitute 
forage biomass for grain biomass (Traxler and 
Byerlee 1993). Likewise, crop-oriented con-
servation technologies may be less appealing 
to livestock farmers whose focus is on their 
animals (Prokopy et al. 2008). Looking at 
farm resources in a regional sense, the exis-
tence of input suppliers and product markets 
may also favor adoption of new enterprises 
or practices that rely on specialized inputs 
(Feder et al. 1985; Feder and Umali 1993).

Information represents a special kind of 
resource that can influence the adoption of 
agricultural conservation practices in two 
ways. First, awareness is a necessary condi-
tion for adoption; farmers who are unaware 
of a practice will not adopt it. So on the 
information supply side, access to informa-
tion tends to drive technology adoption, 
whether the information be from public 
sources (like extension) or private ones (like 
marketing messages) (Prokopy et al. 2008). 
On the information demand side, farmer 
awareness and interest (e.g., of risks to envi-
ronmental quality, of potential benefits from 
a new practice) tend to drive adoption of 
relevant technologies (Prokopy et al. 2008, 
2019; Baumgart-Getz et al. 2012). Given that 
information acquisition happens gradually, 
time to learn about how to use a technology 
also augments adoption levels (Feder et al. 
1985; Pannell et al. 2006).

The specific traits of a potential practice 
or agricultural technology interface with 
farmer objectives and resource characteris-
tics to influence adoption decisions. Whether 
the technology is divisible (so that it can be 
adopted incrementally) or indivisible (so that 
it must be adopted all at once) has a strong 
effect, with divisible technologies adopted 
much more rapidly (Feder et al. 1985; Feder 
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and Umali 1993; Pannell et al. 2006). The 
adoption process can be especially slow for 
technologies that are embodied in capi-
tal goods, like no-till planting equipment 
(Krause et al. 1990). Particularly for risk 
averse farmers, risk-reducing technologies 
tend to be attractive (Feder et al. 1985). 
Because new technologies are relatively 
unfamiliar, by definition, farmers tend 
to prefer ones that can be tested out (are 
“trialable”), because learning about the tech-
nology can reduce the risks both of buyer’s 
remorse and of inefficient use of the new 
practice (Abadi Ghadim and Pannell 1999; 
Pannell et al. 2006; Mascia and Mills 2018). 
Trialability is especially valued by risk averse 
decision makers. Finally, any new practice 
must pass an internal benefit-cost analysis 
on the farm that compares it to the current 
alternative (Abadi Ghadim and Pannell 1999; 
Pannell et al. 2006).

Materials and Methods
Survey Methods. To study corn (Zea mays L.) 
and soybean (Glycine max [L.] Merr.) farm-
ers’ adoption of conservation and precision 
agriculture practices, our research focused 
on four states in the eastern Corn Belt: 
(1) Illinois, (2) Indiana, (3) Ohio, and (4) 
Michigan. The data for our study came from 
a mail survey of farmers who were the main 
decision makers on their farm. This ques-
tionnaire, the 2017 Crop Management and 
Stewardship Practices survey, was developed 
at Michigan State University and cosponsored 
by researchers at Purdue University and The 
Ohio State University. The survey was mailed 
in February of 2017, and farmer responses 
were accepted through April of 2017.

Crop farmers were included in the sam-
pling frame if they had planted at least 100 ac 
(40 ha) of corn or soybean in 2016 and resided 
in a county where at least 15% of total land 
area was planted in corn or soybean. Figure 1 
illustrates the counties sampled in these four 
states. Addresses for 10,582 farmers across the 
region were purchased from Farm Market iD, 
an agricultural data firm. Using county-level 
operation counts from the USDA National 
Agricultural Statistics Service 2012 Census 
of Agriculture as the assumed population, we 
created one stratum at the state level, and two 
substrata within each state, covering farms 
above and below 500 planted ac (202 ha). 
We intentionally oversampled large-acreage 
farmers in order to capture how most land 
is managed in these four states and in antic-

ipation of lower response rates among this 
group. Of the 10,582 addresses contacted, 
3,263 responded, for a 30.8% response rate. 
Of these, 1,129 were complete records, suit-
able for our analysis.

Characterizing Examined Practices. This 
research explores what factors drive the 
adoption of eight conservation and precision 
agriculture technologies, selected to repre-
sent two broad types of tools that farmers 
can use to reduce nutrient loss. First, conser-
vation technologies keep nutrients in place. 
Second, precision agriculture technologies 
use information and variable rate applica-
tion to reduce the application of nutrients 
where they are not needed (and augment 
them where they are). We further distinguish 
within precision agriculture technologies 
by distinguishing between applicative and 
diagnostic technologies (Finger et al. 2019). 
Applicative technologies adjust management 
actions dynamically based on field or subfield 
level information. Diagnostic technologies 
collect field or subfield level information 
that farmers can use to inform future man-
agement decisions.

This study examines a single conservation 
technology, cover crops, which protects the 
soil when a main season crop is not holding 
it in place. Cover crops offer clear environ-
mental benefits by reducing soil erosion and 

retaining soluble nutrients in the organic mat-
ter of the cover crop. While cover crops often 
lack product markets, they can be grazed or 
killed in place to build soil organic matter. 

We examine the adoption of seven pre-
cision agriculture technologies, including 
three applicative technologies and four diag-
nostic ones. The three variable rate (VR) 
application technologies manage fertilizer 
and seed inputs. Variable rate phosphorus 
and potassium (VR-P/K) and variable rate 
nitrogen (VR-N) allow spatial adjustment 
of nutrient application to meet crop needs. 
Variable rate seeding (VR-Seeding) allows 
crop seed planting according to the expected 
crop yield potential. Variable rate application 
of nutrients helps to prevent excess applica-
tion of nutrients where they are not needed, 
thereby reducing nutrient pollution of sur-
face and ground water. Variable rate seeding 
can affect nutrient pollution more indirectly 
by enabling denser planting (especially of 
corn) where field conditions support higher 
yields and sparser planting where yield 
potential is lower. 

The four diagnostic technologies exam-
ined are more varied in how they function. 
Pre-sidedress NO3

– testing (PSNT) entails 
the just-in-time evaluation of N needs for 
corn. Unlike the spatial precision agriculture 
technologies, this diagnostic technology is 

Figure 1
States and counties sampled.
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temporally specific. By providing the farmer 
with updated soil NO3

– information, it can 
deter the overapplication of N fertilizer. Soil 
nutrient mapping builds maps from soil trait 
and test information. Those maps can then 
guide VR fertilizer applications. 

Aerial scouting is a diagnostic practice 
involving the use of imagery gathered from 
above. Such imagery can capture the veg-
etative vigor across a farm field during the 
growing season, thereby informing water, 
nutrient, pest, and disease management deci-
sions with spatial and temporal precision. 
In recent years, aerial scouting has begun 
spreading rapidly, as unmanned aerial vehi-
cles (drones) (1) lower the cost of imagery 
acquisition, relative to piloted airplanes, and 
(2) improve spatial precision relative to satel-
lite images.

The last diagnostic technology, yield map-
ping, uses yield monitors to make a spatial 
record of crop yields. Yield maps can help 
inform farmers’ planting and field manage-
ment decisions in the next growing season, 
potentially reducing nutrient loss via spatial 
management of fertilizers and seeding rates.

Relevant Drivers and Hypothesized 
Effects. Drawing upon the categories of 
explanatory variables identified above, we 
present a set of testable hypotheses about 
how the following four categories of major 
drivers impact farmer decisions on the adop-
tion of practices that abate nutrient losses 
from crop fields: (1) farmer objectives, (2) 
farm household traits, (3) farm resources, and 
(4) information access. For clarity, we state 
the hypotheses in affirmative form rather 
than the rejectable, null form preferred by 
statisticians. We separate our hypotheses by 
category of the technology, including (1) 
conservation practices that keep nutrients 
in place (e.g., cover crops), and (2) precision 
agriculture practices that target nutrients 
for resource-efficient, optimal crop growth. 
As noted above, we subdivide the precision 
agriculture practices into two groups: (1) 
applicative precision technologies (VR-P/K, 
VR-N, and VR-Seeding), and (2) diagnos-
tic precision technologies (e.g., PSNT, soil 
nutrient mapping, aerial scouting, and yield 
mapping) (Finger et al. 2019).

Farmer objectives, as identified through 
stated attitudes, are expected to be strong 
drivers of adoption choices (table 1). We 
hypothesize that income-oriented farmers 
and those motivated by social status will 
adopt precision agriculture technologies. We 

expect environmentally oriented farmers to 
adopt conservation technologies.

Among farmer and farm household traits 
(table 1), literature leads us to hypothesize 
that older farmers will be less inclined to 
adopt either type of technology. By contrast, 
we expect that more educated farmers will 
adopt both conservation and precision agri-
culture practices. Because cover cropping 
entails additional tasks and hence demands 
more labor than the precision technologies, 
we expect that larger families with more 
available labor will be more likely to adopt 
conservation technologies. As crop insur-
ance enrollment mitigates risk of financial 
loss for farmers, we expect that farmers who 
have insured a larger share of their cropped 
acreage will be more inclined to adopt pre-
cision technologies because information 
can increase a farmer’s awareness of his or 
her operation’s vulnerability to financial 
loss (and these are information-intensive 
technologies). Finally, because conservation 

subsidy programs reduce the cost of adopting 
conservation practices, we expect that par-
ticipation in a working lands program will 
favor adoption of conservation practices, but 
that participation in a set-aside conservation 
program will have no effect.

Farm resources (table 1) start with an 
indicator of farm size, which serves as our 
proxy for farm wealth. We measure farm size 
as the sum of owned and rented acres, since 
larger farms tend to own big equipment 
and rent more land (the Pearson correla-
tion coefficient between owned and rented 
land in our survey was +0.15). We hypoth-
esize that farms with more cropped acreage 
will be more inclined to adopt an indivisible 
technology like those embodied in preci-
sion agriculture equipment (notably yield 
monitors and variable rate applicators). We 
expect that farmers with a long time hori-
zon, as indicated by owning a large share of 
the cropland they operate or by the intent 
to bequeath the farm to heirs, will be more 

Table 1 
Hypotheses to be tested for four types of adoption driver.

	 Type of practice and expected effect

Hypothesis by type of adoption driver	 Conservation	 Precision

Farmer objective		
  Income-oriented attitude (relative advantage criterion)	 n.a.	 (+)
  Environmentally oriented attitude	 (+)	 n.a.
  Social status oriented attitude	 n.a.	 (+)
Farmer and household traits		
  Age (y)	 (–)	 (–)
  Education (level)	 (+)	 (+)
  Family members (number) (Labor resource indicator)	 (+)	 n.a.
  Crop insurance (proportion of crop acres) (*Risk	 n.a.	 (+)
  reducing tech)
  Working lands conservation program participator (binary)	(+)	 n.a.
  Set-aside conservation program participator (binary)	 n.a.	 n.a.
Farm resources		
  Cropped area (ac) (Farm size indicator; *Indivisible 	 n.a.	 (+)
  precision tech.)
  Own land share (proportion) (Tenure/capital indicator)	 (+)	 n.a.
  Bequeath farm expected (binary) (Time horizon indicator)	(+)	 n.a.
  Livestock farm (binary) (Agricultural system type)	 (+)	 (–)
Information access 		
  Public source: Extension or faculty (binary) 	 n.a.	 n.a.
  Private vendor: Seed or chemical dealer	 n.a.	 n.a.
  Private consultant	 n.a.	 n.a.
  Other: Web, print, grower association	 n.a.	 n.a.
Note: + denotes positive, – denotes negative, and n.a. denotes no a priori hypothesis on the direc-
tion of expected effect.
*Indicates where technology traits, the fifth adoption driver, interacts with included variables to 
influence hypothesized effect.
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likely to adopt conservation practices that 
enhance soil quality. Finally, regarding com-
patibility of agricultural systems with new 
technologies, we expect that cover crop-
ping will be attractive to livestock farmers 
as a source of forage. By contrast, we expect 
that livestock farmers will be disinclined to 
invest money and time in precision cropping 
practices (though they would likely take an 
interest in precision livestock practices, had 
we measured any of these). We define live-
stock farmers as farmers for whom (1) milk 
and dairy products, and/or (2) livestock and 
animal products other than dairy, account for 
more than 10% of farm revenues.

Our literature review indicates that an 
additional category of drivers, information, 
can play an important role in practice and 
technology adoption decisions. Information 
availability can have hard-to-predict effects 
for at least two reasons. First, the effect of 
information on adoption decisions depends 
on prior information available to the deci-
sion maker—a prior state that we do not 
observe with our cross-sectional survey data. 
Second, decision makers choose their infor-
mation sources, so the information effect is 
endogenous to the decision to seek it out. 
In the data set explored here, we lack infor-
mation on stated awareness or familiarity 
with examined practices beyond the level of 
adoption. Because the potential role of infor-
mation as a driver of adoption is complex 
and dynamic, we include a series of variables 
measuring the frequency with which farm-
ers consult each of nine distinct information 
sources as controls for information access 
without hypothesizing about their expected 
effects on the adoption of specific practices 
(table 1). The nine information sources are 
(1) university extension, (2) university fac-
ulty, (3) chemical input dealers, (4) seed input 
dealers, (5) independent crop consultants, (6) 
other farmers, (7) grower associations, (8) 
the Web, and (9) print sources. Frequency of 
access is measured on a five-point scale rang-
ing from never (1) to once a day (5).

Key Explanatory Variables. Table 2 presents 
summary statistics for the key independent 
variables. The survey sample was stratified by 
state and farm size, which entailed oversam-
pling important groups with historically low 
response rates, such as large farms. In order 
to adjust the statistical results to account 
for different probabilities of subpopulations 
being sampled, we use probability weights 
in order to permit extrapolation from the 

stratified sample to the broader population of 
corn and soybean farms with over 100 ac (40 
ha) in the states of Illinois, Indiana, Michigan, 
and Ohio. Table 3 details how the inverse 
sampling probability weights were calculated 
based on the stratum-level response sample 
and the associated stratum population. All 
statistical results presented here are computed 
using these probability weights. For interested 
readers, we make unweighted results from the 
ordered probit analysis available in the supple-
mental material for this article, which can be 
found online at http://dx.doi.org/10.22004/
ag.econ.302418 (Solon et al. 2015). 

Factor Analysis of Farmer Attitudes. We 
measured farmer objectives indirectly via 
latent attitude factors that were constructed 
from levels of agreement with Likert-scaled 

statements. We used a confirmatory factor 
analysis to characterize the latent attitudes 
that might influence a farmer’s decision to 
adopt a certain practice. There were 11 state-
ments regarding respondent attitudes toward 
social status, income, and environmental 
stewardship. As these variables were mea-
sured on a 5-point Likert scale, many were 
correlated with one another. Through factor 
analysis, we reduced the 11 Likert variables 
to the following three attitudinal factors: (1) 
preference for income, (2) preference for 
high social status, and (3) preference for envi-
ronmental amenities, respectively. 

Table 4 presents the factors and analogous 
factor loadings to these 11 statements. These 
loadings are used to generate attitudinal 
scores for each farmer that, by construction, 

Table 2
Summary statistics for 13 independent variables.

Variable	 Unit	 Mean	 SD	 Min.	 Max.

Cropland	 Acres	 612	 16.2	 6	 14,500
Own land share	 Proportion	 0.501	 0.015	 0	 1
Labor force	 Number of persons	 0.689	 0.0563	 0	 136
Livestock farm	 0/1	 0.207	 n.a.	 0	 1
Age	 Years	 61.9	 0.442	 28	 99
Educational level	 Integer	 2.85	 0.033	 1	 4
Working lands conservation	 0/1	 0.110	 n.a.	 0	 1
program participator
Crop insurance enrollment	 Proportion of	 0.750	 0.016	 0	 1
	 crop acres
Set-aside conservation	 0/1	 0.281	 n.a.	 0	 1
program participator
Bequeath intent	 0/1	 0.658	 n.a.	 0	 1
State: Illinois	 0/1	 0.493	 n.a.	 0	 1
State: Indiana	 0/1	 0.236	 n.a.	 0	 1
State: Michigan	 0/1	 0.097	 n.a.	 0	 1
State: Ohio	 0/1	 0.174	 n.a.	 0	 1

Table 3 
Probability weights by stratum.

		  Strata response	
Strata	 Strata population size	 sample size	 Probability weight

Illinois, large farms	 7,492	 253	 29.61
Illinois, smaller farms	 14,980	 129	 116.12
Indiana, large farms	 3,578	 159	 22.50
Indiana, smaller farms	 7,153	 109	 65.62
Michigan, large farms	 1,039	 108	 9.62
Michigan, smaller farms	 3,370	 41	 82.20
Ohio, large farms	 1,584	 186	 8.52
Ohio, smaller farms	 6,355	 144	 44.13

C
opyright ©

 2020 Soil and W
ater C

onservation Society. A
ll rights reserved.

 
w

w
w

.sw
cs.org

 75(5):640-650 
Journal of Soil and W

ater C
onservation

http://www.swcs.org


645SEPT/OCT 2020—VOL. 75, NO. 5JOURNAL OF SOIL AND WATER CONSERVATION

have mean zero with unit variance. The 3 
attitudinal factors are described as follows:
•	 The “Income” factor experiences high 

loadings on statements about optimiz-
ing income;

•	 The “Social status” factor sees high load-
ings on statements regarding preference for 
a higher social status in their community;

•	 The “Environmental” factor has high 
loadings on preferences for environmen-
tal amenities and stewardship.

In the following analyses of technology 
adoption, these factors are included to rep-
resent the farmer objectives inherent in their 
latent attitudes.

Ordered Probit Analysis. In order to test 
hypotheses statistically, we employed an 
ordered probit analysis to assess the factors 
driving adoption of the eight conservation 
and precision agriculture practices. The state 
of adoption of each practice, the dependent 
variable in each ordered probit model, was 
self-reported by the farmer at one of four 
levels: (1) never used, don’t want to; (2) never 
used, might; (3) use sometimes; or (4) use reg-
ularly. We control for state-level fixed effects 
by including dummy variables for Illinois, 
Indiana, and Ohio, using Michigan farmers 
as the base group. We also weight by stratum 
by using the probability weights described 
in table 3. The ordered probit models were 
estimated via maximum likelihood. The esti-
mated coefficients are not easily converted to 
marginal effects, so we draw inferences from 
their sign and significance, rather than from 
their magnitudes.

Results and Discussion 
We begin this section by describing adoption 
rates of the eight practices presented above. 
Afterwards, we discuss our results, separated 
by the hypotheses delineated in table 1.

Adoption Levels of Studied Practices. The 
relative adoption rates of the eight tech-
nologies, described in the Characterizing 
Examined Practices section, among farmers in 
the eastern Corn Belt in 2017 are captured 
in figures 2a and 2b. The precision agricul-
ture technologies, including both mapping 
and variable rate application, are the mostly 
widely adopted. Soil nutrient mapping 
(figure 2b) is the most popular, with approx-
imately 60% of respondents using it regularly 
and just under 20% more using it at least 
sometimes. VR-P/K (figure 2a) is the sec-
ond most widely used practice, being used 
at least sometimes by approximately 60% of 

respondents. Yield mapping (figure 2b) is also 
a popular practice, with over 40% using it 
regularly and another 10% using it at least 
sometimes. The other five practices were 
used sometimes by no more than 35% of 

respondents. From most to least used “some-
times,” they are cover cropping (~35%), 
VR-N (~29%), VR-Seeding (~25%), aerial 
scouting (~22%), and PSNT (~18%).

Table 4 
Factor loadings from confirmatory factor analysis for three latent variables.

Variable	 Value statement	 Factor loading

Income	 Earn a high income	 1.00
	 Build up wealth and family assets	 1.02
	 Minimize debt	 0.54
	 Maximize farm/company profit	 0.77
Social status	 Be among the best in the industry	 1.00
	 Keep family tradition of farming alive	 0.75
	 Pass on the land in good condition	 0.59
	 Have good looking fields	 0.84
Environmental	 Maintain good hunting, fishing, and hiking nearby	 1.00
	 Look after the environment	 1.23
	 (Mean concern about agriculture’s contribution to	 0.51
	 environmental damage)

Figure 2
(a) Level of adoption of conservation practice and applicative precision technologies. (b) Level of adop-
tion of diagnostic precision technologies. VR = variable rate; PSNT = pre-sidedress nitrate testing.
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Farmer Objective Drivers. As hypothe-
sized, adoption of cover cropping is more 
likely among farmers with a high preference 
for environmental amenities and stewardship 
(table 5). While we also hypothesized that 
social status would drive the likelihood of 
adopting precision agriculture practices, in 
the analysis with survey weights, we found 
that to be the case only for the adoption of 
soil nutrient mapping (table 6). However, 
in the unweighted analysis, the adoption of 
aerial scouting is also more likely among 
farmers with a social status objective (table 
A6 in the supplemental material, which 
can be found online at http://dx.doi.
org/10.22004/ag.econ.302418). Contrary to 
our hypothesis that income-oriented farm-
ers adopt precision technology practices, we 
found that adoption of soil mapping was 
actually less likely among income-oriented 
farmers (table 6).

Farmer and Household Trait Drivers. As 
postulated, the adoption of cover cropping 
was more likely among livestock farmers 
(table 7). In further support of our hypothe-
ses about livestock farmers, being a livestock 
farmer decreased the likelihood of adoption 
of three precision agriculture technologies: 
(1) VR-P/K, (2) soil nutrient mapping, and 
(3) yield mapping (tables 7 and 8).

Older farmers are less likely to adopt five 
of the eight practices that are the focus of this 
study: (1) cover cropping, (2) VR-Seeding, (3) 
aerial scouting, (4) soil nutrient mapping, and 
(5) yield mapping—supporting our hypothe-
ses and echoing much of the current literature. 

More educated farmers are more likely to 
adopt aerial scouting, soil nutrient mapping, 
and yield mapping, supporting our hypoth-
esis that greater education would favor the 
adoption of precision agriculture practices 
(table 8). However, education had no effect 
on the adoption of cover cropping, contrary 
to our expectation. 

We find no evidence that having a higher 
supply of labor increases the likelihood of 
adopting cover cropping (table 7), contrary 
to our hypothesis. While we had no expecta-
tions of labor effects on precision agriculture 
practice adoption, we find that farms with 
less labor are more likely to adopt VR-P/K 
(table 7). However, this relationship does not 
hold for the other precision technologies. 

As expected, participation in working lands 
environmental stewardship programs increases 
the likelihood of adopting cover cropping 
(table 7). Although we had no expectation 

that working lands programs would affect the 
adoption of precision agriculture practices, 
we find evidence that participation in work-
ing lands programs boosts the probability of 
adopting PSNT and soil nutrient mapping 
(table 8; both of which can benefit from cost-
share subsidies in some districts). 

As for risk management objectives, we 
find that the proportion of land with crop 
insurance increases the probability of adopt-
ing VR-P/K and yield mapping, but not any 
other precision technology (tables 7 and 8).

Farm Resource Drivers. Our results show 
that farmers who operate more cropland 
are more likely to adopt VR-N, VR-P/K, 
VR-Seeding, aerial scouting, and yield 
mapping (tables 7 and 8), which supports 
our hypothesis that that farms with more 
cropped acreage will be more inclined to 
adopt precision agriculture technologies, 
consistent with the existence of economies 
of scale for these technologies.

We find no evidence that farmers who 
own a larger proportion of the land they 
operate or farmers expecting to bequeath are 
more likely to adopt cover cropping (table 
7), contrary to our hypotheses. Although we 
had no expectations that land tenure status 
would affect precision technology adop-
tion, the results indicate that farmers who 
rent relatively more land are more likely to 
adopt aerial scouting (table 8). We also had 
no expectation that expecting to bequeath 
would drive the adoption of precision tech-
nologies, but we found that farmers who 
expect to bequeath their farm to an heir are 
more likely to adopt VR-N, aerial scouting, 
and yield mapping.

Information Access Drivers. We find that 
farmers with greater information access to 
university faculty are more likely to adopt 
VR-N, VR-Seeding, PSNT, aerial scouting 
and yield mapping, but not VR-P/K or soil 
mapping (tables 9 and 10). These findings 
suggest that greater access to public sources 

Table 5 
Attitudinal determinants of adoption of conservation practice and applicative precision tech-
nologies (survey-weighted ordered probit regression).

Variables	 Cover cropping	 VR-N	 VR-P/K	 VR-seeding

Income	 –0.149	 –0.0260	 5.84 × 10–6	 –0.118
	 (0.165)	 (0.197)	 (0.175)	 (0.166)
Environmental	 0.432**	 –0.0899	 0.144	 –0.100
	 (0.193)	 (0.219)	 (0.194)	 (0.181)
Social status	 –0.143	 0.0898	 –0.0443	 0.286
	 (0.283)	 (0.340)	 (0.299)	 (0.275)
Pseudo R-squared	 0.107	 0.0264	 0.0515	 0.110
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in 
parentheses. VR-N = variable rate nitrogen. VR-P/K = variable rate phosphorus and potassium. 
VR-seeding = variable rate seeding.

Table 6 
Attitudinal determinants of adoption for temporal, nonspatial precision technologies and diag-
nostic precision technologies (survey-weighted ordered probit regression).

			   Soil nutrient	
Variables	 PSNT	 Aerial scouting	 mapping	 Yield mapping

Income	 –0.243	 0.0277	 –0.286*	 0.0440
	 (0.170)	 (0.172)	 (0.169)	 (0.184)
Environmental	 –0.0125	 –0.0469	 –0.188	 –0.153
	 (0.187)	 (0.175)	 (0.197)	 (0.194)
Social status	 0.426	 0.276	 0.584**	 0.231
	 (0.289)	 (0.281)	 (0.280)	 (0.302)
Pseudo R-squared	 0.0914	 0.139	 0.0790	 0.149
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in pa-
rentheses. PSNT = pre-sidedress nitrate testing.
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cover crops can also serve as forage for live-
stock (Wardynski 2015), they offer a private 
feed benefit to supplement the mixed pri-
vate-public soil conservation benefit, and 
farmers who raise grazing livestock may 
consequently be more likely to adopt. 
However, as information on the types of 
livestock raised was not elicited from respon-
dents, we cannot distinguish between grazing 
livestock versus nongrazing livestock (e.g., 
hogs and feedlot cattle). If the private feed 
benefit is only realized for farmers who 
manage grazing livestock, then the effect 
for these farmers is likely even larger than 
the effect estimated in this study, as includ-
ing managers of nongrazing livestock in the 
same category as managers of grazing live-
stock will bias our estimate toward zero. As 
hypothesized, livestock farmers also appear 
less inclined to invest in specialized equip-
ment for fine-tuning crop management via 
precision technologies.

Policy incentives are designed to encour-
age the adoption of best management 
practices, and our research finds evidence 
of success. Participation in working lands 
programs was associated with the adoption 
of both cover cropping—a soil and nutri-
ent retention practice—and PSNT—a crop 
nutrient diagnostic practice. As cover crop-
ping and nutrient management practices 
are both eligible for cost-sharing under the 
Environmental Quality Incentive Program 
(EQIP), participation in EQIP reduces the 
initial cost of adoption for these practices 
(Newton 2019).

Other findings reinforce the existing lit-
erature. Age had a negative impact on the 
likelihood of adoption of five of eight prac-
tices, echoing much of the literature on the 
effects of age on adoption (Baumgart-Getz 
et al. 2012; Prokopy et al. 2008). Among the 
practices where younger farmers were more 
likely to adopt was cover cropping, although 
other research into conservation practices 
finds that older farmers are more likely to 
enroll in conservation programs (Yeboah et 
al. 2015). Education had a positive impact 
on the probability of adopting three preci-
sion technologies, concurring with literature 
on education’s impacts on best manage-
ment practice adoption (Prokopy et al. 
2008; Pierpaoli et al. 2013). Scale of farming 
operation and access to capital, as indicated 
by cropland area operated, also contributed 
strongly to the likelihood of adopting five of 
the seven precision agriculture practices, but 

of information on best management prac-
tices increases the likelihood of precision 
technology adoption. However, there is no 
evidence to suggest that access to public 
sources of information drives the decision to 
adopt cover cropping, suggesting that such 
information sources would have no effect on 
the adoption of conservation practices.

Although we had no expectations about 
the impacts of private information sources 
on precision technology practice adoption, 
we do find that farmers with access to chem-
ical dealers are more likely to adopt VR-P/K 
and PSNT (tables 9 and 10). Access to pri-
vate consultants increases the likelihood of 
adoption of all of the precision technologies. 
We also find that access to private consultants 
boosts the probability of adoption of cover 
cropping (tables 9 and 10).

Patterns across Drivers and Practices. Our 
findings highlight the importance of nonin-
come objectives in motivating the adoption 
of farming practices that abate soil nutrient 
losses. A pro-environmental attitude strongly 
augmented the likelihood of adopting cover 
cropping—an important conservation prac-
tice. This finding aligns with the literature 
on environmental awareness and attitudes as 
drivers of best management practice adop-
tion (Prokopy et al. 2008; Baumgart-Getz et 
al. 2012). Likewise, a social status orientation 
favors adoption of at least some of the diag-
nostic precision agriculture practices. 

Farm type is a significant factor in driv-
ing the decision to adopt best management 
practices. In particular, being a livestock 
farmer increases the likelihood of adopting 
cover cropping but decreases the probabil-
ity of adopting precision technologies. Since 

Table 7
Determinants of adoption of conservation practice and applicative precision technologies (survey- 
weighted ordered probit regression).

		  Dependent variables

	 Unit of	 Cover	
Variables	 measure	 cropping	 VR-N	 VR-P/K	 VR-Seeding

Cropland	 Acres	 –3.62 × 10–5	 7.33 × 10–5*	 0.000140**	 0.000155***
		  (3.93 × 10–5)	 (3.95 × 10–5)	 (5.84 × 10–5)	 (5.95 × 10–5)
Own land share	 Proportion	 –0.185	 –0.0244	 0.0438	 –0.154
		  (0.122)	 (0.131)	 (0.131)	 (0.125)
Labor force	 Number of	 –0.00421	 0.00178	 –0.0175*	 –0.00112
	 persons	 (0.00683)	 (0.0127)	 (0.00948)	 (0.0118)
Livestock farm	 Binary	 0.197*	 –0.0816	 –0.247**	 –0.132
		  (0.111)	 (0.114)	 (0.108)	 (0.101)
Age 	 Years	 –0.00756*	 –0.00340	 –0.00665	 –0.0187***
		  (0.00400)	 (0.00412)	 (0.00427)	 (0.00411)
Educational level	 Integer	 0.0494	 –0.00458	 –0.0570	 0.0786
		  (0.0542)	 (0.0550)	 (0.0555)	 (0.0530)
Crop insurance	 Proportion	 –0.0992	 –0.0611	 0.263**	 0.179
enrollment	 of crop	 (0.113)	 (0.122)	 (0.112)	 (0.113)
	 acres
Working lands	 Binary	 0.822*** 	 0.0172	 0.0241	 0.113
conservation		  (0.146)	 (0.108)	 (0.130)	 (0.125)
program
participator
Bequeath intent	 Binary	 0.151	 0.194*	 –0.0155	 0.136
		  (0.0975)	 (0.101)	 (0.101)	 (0.0983)
Illinois	 Binary	 –0.442***	 –0.135	 –0.0628	 –0.210
		  (0.153)	 (0.182)	 (0.160)	 (0.156)
Indiana	 Binary	 0.236	 –0.362**	 0.0544	 0.0557
		  (0.153)	 (0.177)	 (0.155)	 (0.160)
Ohio	 Binary	 0.435***	 –0.273	 –0.306**	 –0.116
		  (0.151)	 (0.174)	 (0.151)	 (0.154)
Pseudo R-squared	 —	 0.107	 0.0264	 0.0515	 0.110
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in pa-
rentheses. VR-N = variable rate nitrogen. VR-P/K = variable rate phosphorus and potassium. 
VR-Seeding = variable rate seeding.
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not cover cropping. These findings corrob-
orate with literature on the impacts of farm 
size on the adoption of precision technologies 
(Schimmelpfennig 2016). The share of land 
enrolled in crop insurance likewise favored 
adoption of precision agriculture practices, 
notably yield mapping. The failure of crop 
insurance to encourage adoption of conser-
vation practices may be due to the fact that 
until 2017, the US Federal Crop Insurance 
Corporation did not have formal guidelines 
for conditions when cover crops would not 
interfere with an insurance claim. The link 
between expecting to bequeath the opera-
tion to an heir and the adoption of VR-N, 
aerial scouting, and yield mapping could 
be explained by either of two mechanisms. 
One would be that farmers who intend to 
bequeath the farm take a longer term, mul-

tigenerational perspective. An alternative 
explanation would be that farmers who 
expect to bequeath to an heir often have that 
heir actively involved in management, so the 
bequeath variable may be picking up a gen-
erational effect. Information access across all 
sources had a positive (or insignificant) effect 
on the adoption of all practices, consistent 
with the literature (Prokopy et al. 2008). 
Notably, we find no significant effect on the 
probability of adoption of any practice from 
access to public extension services, though 
direct access to faculty is a positive deter-
minant in the adoption of five of the seven 
precision agriculture technologies examined. 
We further find that access to private con-
sultants, as well as access to print sources, 
raise the odds of conservation practice adop-
tion. Private consultants proved to be the 

most consistently positive determinant of 
adopting nutrient abatement practices, with 
positive effects on the adoption of all eight 
practices examined.

Our results show that nutrient abatement 
technologies vary in the factors that drive 
farmers to adopt them. This finding echoes 
those reported in Prokopy et al. (2008) and 
Baumgart-Getz et al. (2012), suggesting that 
a single model on practice adoption cannot 
accurately apply to all practices and regions. 
Policymakers would do well to undertake 
a targeted approach in encouraging wider 
adoption of the practices that are the focus of 
this study. Since each technology appears to 
exhibit a unique set of traits of those adopt-
ing it, it may be worthwhile for informed 
policymakers to target farmers on a prac-
tice-by-practice basis, rather than through a 
one-size-fits-all approach. 

While the ordered probit model does not 
provide coefficients that are readily converted 
into measurable marginal effects, we can 
infer increasing magnitudes of joint target-
ing efforts. For example, per table 8, younger, 
better educated farmers are more inclined to 
adopt aerial scouting, soil nutrient mapping, 
and yield mapping. Farmers with more crop-
land who intend to bequeath their farms to 
the next generation are even more likely to 
adopt aerial scouting and yield mapping. 

Summary and Conclusions
Policies that aim to encourage the voluntary 
adoption of cropping practices that abate 
crop nutrient loss need to be grounded in 
an understanding of the factors that motivate 
farmer adoption decisions. The large extant 
technology adoption literature provides a 
sound base for identifying major adoption 
determinants, including farmer traits, farm 
resources, technology traits, and access to 
information. In particular, these traits influ-
ence the adoption of conservation and 
precision agriculture practices that can abate 
crop nutrient loss, and can be used to assist 
policymakers in designing policy with incen-
tives to attract those farmers who may be 
more amenable to adopting these practices. 

Beyond the “usual suspect” drivers of 
farm technology adoption, we find that key 
roles are played by farmer objectives beyond 
income, technological compatibility with 
existing farm systems (i.e. farm type), and the 
presence of policy incentives. Environmental 
objectives, captured here by a latent environ-
mental attitudinal factor, boost the likelihood 

Table 8
Determinants of adoption for temporal, nonspatial precision technologies and diagnostic preci-
sion technologies (survey-weighted ordered probit regression).

		  Dependent variables

	 Unit of		  Aerial	 Soil nutrient	 Yield
Variables	 measure	 PSNT	 scouting	 mapping	 mapping

Cropland	 Acres	 1.11 × 10–5	 0.000101**	 6.46 × 10–5	 0.000500***
		  (3.86 × 10–5)	 (4.75 × 10–5)	 (8.62 × 10–5)	 (9.17 × 10–5)
Own land share	 Proportion	 –0.142	 –0.323**	 –0.132	 –0.189
		  (0.123)	 (0.125)	 (0.140)	 (0.130)
Labor force	 Number of	 0.0146	 0.0175	 0.0145	 –0.0120
	 persons	 (0.0132)	 (0.0124)	 (0.0214)	 (0.0108)
Livestock farm	 Binary	 –0.126	 –0.0466	 –0.232**	 –0.472***
		  (0.105)	 (0.108)	 (0.112)	 (0.0979)
Age 	 Years	 –0.000829	 –0.00815*	 –0.00813*	 –0.0125***
		  (0.00411)	 (0.00438)	 (0.00493)	 (0.00426)
Educational level	 Integer	 –0.0624	 0.188***	 0.109*	 0.161***
		  (0.0516)	 (0.0507)	 (0.0592)	 (0.0539)
Crop insurance	 Proportion	 0.166	 0.119	 0.177	 0.188*
enrollment	 of crop acres	 (0.114)	 (0.108)	 (0.118)	 (0.110)
Working lands	 Binary	 0.288**	 0.144	 0.331** 	 0.190
conservation		  (0.134)	 (0.124)	 (0.145)	 (0.145)
program participator
Set-aside	 Binary	 –0.0377 	 –0.0581	 0.017	 –0.0489
conservation		  (0.0972)	 (0.0989)	 (0.114)	 (0.103)
program participator
Bequeath intent	 Binary	 0.125	 0.176*	 –0.0730	 0.242**
		  (0.0996)	 (0.0929)	 (0.108)	 (0.106)
Illinois	 Binary	 –0.196	 0.202	 0.0485	 0.0519
		  (0.161)	 (0.149)	 (0.156)	 (0.155)
Indiana	 Binary	 –0.180	 0.345**	 0.0394	 –0.0433
		  (0.165)	 (0.156)	 (0.149)	 (0.151)
Ohio	 Binary	 –0.315*	 0.153	 –0.222	 –0.211
		  (0.165)	 (0.148)	 (0.141)	 (0.149)
Pseudo R-squared	 —	 0.0914	 0.139	 0.0790	 0.149
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in paren-
theses. PSNT = pre-sidedress nitrate test.
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of adopting a conservation practice like 
cover cropping. Likewise, social status seek-
ing is associated with adoption of nutrient 
mapping and (in the unweighted model) 
aerial scouting. These findings suggest that 
adoption of these practices can potentially 
be enhanced if government agencies target 
farmers with these objectives.

Program targeting can also benefit by 
understanding how farm types align with 
the appeal of specific farming practices. 
Livestock farmers are drawn to practices that 
can reduce their feed costs (like cover crop 
production), but they have limited time and 
money to invest in crop-specific technolo-
gies without a notable livestock benefit (like 
precision agriculture practices). 

Where incentive policies align with farmer 
objectives, they can be effective at inducing 
adoption of environmentally beneficial prac-
tices. This connection is illustrated by the fact 
that adoption of cover crops and the PSNT 
are both eligible for cost sharing under EQIP, 
and that participation in working lands pro-
grams (like EQIP) was a significant driver of 
the adoption of both practices.

An important caveat regarding adoption 
of multiple practices is that farmers’ adop-
tion decisions are not independent of one 
another (Wachenheim and Lesch 2014). 
Further, some practices are most effective 
when adopted jointly. With these factors in 
mind, policymakers can be most effective in 
targeting programs to encourage adoption of 

conservation practices if they recognize con-
nections between practices and suitability to 
specific kinds of farms.

The design of effective, voluntary con-
servation policy hinges on tailoring the 
policy to the farmer, the farm, the bio-
physical setting, the market setting, and the 
technologies at hand. This research sheds 
fresh light on the roles of farmer objectives 
and the farm-technology match, especially 
for effective policy targeting. It further 
illustrates that well-designed, targeted con-
servation incentives can have sustained 
influence on the adoption of nutrient 
abatement practices. 

Table 9
Information access determinants of adoption of conservation practice and applicative precision technologies (survey-weighted ordered probit regression).

		  Dependent variables

Variables	 Unit of measure	 Cover cropping	 VR-N	 VR-P/K	 VR-Seeding

Info: extension	 5-point Likert	 0.0997 (0.0733)	 –0.0266 (0.0720)	 0.0290 (0.0842)	 0.0595 (0.0801)
Info: faculty	 5-point Likert	 –0.0328 (0.0731)	 0.214*** (0.0713)	 0.0416 (0.0755)	 0.161** (0.0779)
Info: chemical dealer	 5-point Likert	 0.0566 (0.0824)	 0.0545 (0.0761)	 0.176** (0.0809)	 0.0514 (0.0786)
Info: seed dealer	 5-point Likert	 –0.0625 (0.0819)	 –0.0426 (0.0776)	 0.0186 (0.0796)	 –0.0412 (0.0770)
Info: independent consultant	 5-point Likert	 0.166*** (0.0504)	 0.0868* (0.0511)	 0.143** (0.0557)	 0.164*** (0.0489)	
Info: other farmers	 5-point Likert	 0.0698 (0.0479)	 0.0529 (0.0537)	 –0.116** (0.0589)	 0.0267 (0.0526)
Info: growers associations	 5-point Likert	 0.0372 (0.0644)	 –0.0157 (0.0626)	 0.00246 (0.0658)	 0.0888 (0.0688)
Info: web	 5-point Likert	 0.0167 (0.0382)	 0.0176 (0.0382)	 0.0815** (0.0393)	 0.0581 (0.0357)
Info: print	 5-point Likert	 0.0828* (0.0499)	 –0.0211 (0.0549)	 0.0783 (0.0551)	 0.0834 (0.0532)
Pseudo R-squared	 —	 0.107	 0.0264	 0.0515	 0.110
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in parentheses. VR-N = variable rate nitrogen. VR-P/K = vari-
able rate phosphorus and potassium. VR-Seeding = variable rate seeding.

Table 10
Information access determinants of adoption for temporal, nonspatial precision technologies and diagnostic precision technologies (survey-weighted 
ordered probit regression).

		  Dependent variables

Variables	 Unit of measure	 PSNT	 Aerial scouting	 Soil nutrient mapping	 Yield mapping

Info: extension	 5-point Likert	 –0.0592 (0.0836)	 –0.0342 (0.0811)	 0.0769 (0.0823)	 –0.0113 (0.0825)
Info: faculty	 5-point Likert	 0.137* (0.0796)	 0.230*** (0.0737)	 0.0722 (0.0819)	 0.169** (0.0813)
Info: chemical dealer	 5-point Likert	 0.171** (0.0771)	 0.0508 (0.0815)	 –0.0318 (0.0897)	 0.0544 (0.0897)
Info: seed dealer	 5-point Likert	 –0.0289 (0.0736)	 0.0549 (0.0798)	 0.136 (0.0921)	 –0.00947 (0.0888)
Info: independent consultant	 5-point Likert	 0.246*** (0.0515)	 0.134*** (0.0487)	 0.144** (0.0578)	 0.239*** (0.0538)
Info: other farmers	 5-point Likert	 0.0795 (0.0542)	 –0.00476 (0.0502)	 0.0409 (0.0628)	 –0.00979 (0.0570)
Info: growers associations	 5-point Likert	 0.0505 (0.0703)	 0.0236 (0.0727)	 0.0453 (0.0700)	 0.164** (0.0691)
Info: web	 5-point Likert	 0.0971** (0.0394)	 0.148*** (0.0381)	 0.0205 (0.0433)	 0.0663* (0.0400)
Info: print	 5-point Likert	 –0.0256 (0.0534)	 0.107** (0.0511)	 0.137** (0.0581)	 0.000182 (0.0522)
Pseudo R-squared	 —	 0.0914	 0.139	 0.0790	 0.149
Notes: Significance (t-test probability > 0): ***1%; **5%; *10%. Robust standard errors in parentheses. PSNT = pre-sidedress nitrate test.
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