Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Evolution of rock cover, surface roughness, and flow velocity on stony soil under simulated rainfall

L. Li, M.A. Nearing, V.O. Polyakov, M.H. Nichols and M.L. Cavanaugh
Journal of Soil and Water Conservation September 2020, 75 (5) 651-668; DOI: https://doi.org/10.2489/jswc.2020.00086
L. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Nearing
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V.O. Polyakov
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.H. Nichols
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.L. Cavanaugh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Abrahams A.D.,
    2. Parsons A.J.
    . 1991. Resistance to overland flow on desert pavement and its implications for sediment transport modeling. Water Resources Research 27:1827–1836, https://doi.org/10.1029/91WR01010.
    OpenUrlCrossRefGeoRefWeb of Science
  2. ↵
    1. Abrahams A.D.,
    2. Parsons A.J.
    . 1994. Hydraulics of interrill overland flow on stone-covered desert surfaces. Catena 23:111–140, https://doi.org/10.1016/0341-8162(94)90057-4.
    OpenUrlGeoRef
  3. ↵
    1. Abrahams A.D.,
    2. Parsons A.J.,
    3. Luk S.-H.
    . 1986. Resistance to overland flow on desert hillslopes. Journal of Hydrology 88:343–363, https://doi.org/10.1016/0022-1694(86)90099-5.
    OpenUrlCrossRefGeoRefWeb of Science
  4. ↵
    1. Al-Hamdan O.Z.,
    2. Pierson F.B.,
    3. Nearing M.A.,
    4. Williams C.J.,
    5. Stone J.J.,
    6. Kormos P.R.,
    7. Boll J.,
    8. Weltz M.A.
    . 2013. Risk assessment of erosion from concentrated flow on rangelands using overland flow distribution and shear stress partitioning. Transactions of the ASABE 56:539–548, https://doi.org/10.13031/2013.42684.
    OpenUrl
  5. ↵
    1. Bryant R.,
    2. Moran M.S.,
    3. Thoma D.P.,
    4. Holifield Collins C.D.,
    5. Skirvin S.,
    6. Rahman M.,
    7. Slocum K.,
    8. Starks P.,
    9. Bosch D.,
    10. González Dugo M.P.
    . 2007. Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture. IEEE Geoscience and Remote Sensing Letters https://doi.org/10.1109/LGRS.2006.887146.
  6. ↵
    1. Bunte K.,
    2. Poesen J.
    . 1993. Effects of rock fragment covers on erosion and transport of noncohesive sediment by shallow overland flow. Water Resources Research 29(5):1415-1424, https://doi.org/10.1029/92WR02706.
    OpenUrlGeoRef
  7. ↵
    1. Ding W.,
    2. Huang C.
    . 2017. Effects of soil surface roughness on interrill erosion processes and sediment particle size distribution. Geomorphology 295:801–810, https://doi.org/10.1016/j.geomorph.2017.08.033.
    OpenUrl
  8. ↵
    1. Gilley J.E.,
    2. Kottwitz E.R.,
    3. Wieman G.A.
    . 1992. Darcy-Weisbach roughness coefficients for gravel and cobble surfaces. Journal of Irrigation and Drainage Engineering 118:104–112, https://doi.org/10.1061/(ASCE)0733-9437(1992)118:1(104).
    OpenUrl
  9. ↵
    1. Giménez R.,
    2. Planchon O.,
    3. Silvera N.,
    4. Govers G.
    . 2004. Longitudinal velocity patterns and bed morphology interaction in a rill. Earth Surface Processes and Landforms 29:105–114, https://doi.org/10.1002/esp.1021.
    OpenUrlGeoRef
  10. ↵
    1. Gómez J.A.,
    2. Nearing M.A.
    . 2005. Runoff and sediment losses from rough and smooth soil surfaces in a laboratory experiment. Catena 59:253–266, https://doi.org/10.1016/j.catena.2004.09.008.
    OpenUrlGeoRef
  11. ↵
    1. Govers G.
    1992. Relationship between discharge, velocity and flow area for rills eroding loose, non-layered materials. Earth Surface Processes and Landforms 17(5):515-528, https://doi.org/10.1002/esp.3290170510.
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Helming K.,
    2. Römkens M.J.M.,
    3. Prasad S.N.
    . 1998. Surface roughness related processes of runoff and soil loss: A flume study. Soil Science Society of America Journal 62:243, https://doi.org/10.2136/sssaj1998.03615995006200010031x.
    OpenUrlGeoRefWeb of Science
  13. ↵
    1. Holden J.,
    2. Kirkby M.J.,
    3. Lane S.N.,
    4. Milledge D.G.,
    5. Brookes C.J.,
    6. Holden V.,
    7. McDonald A.T.
    . 2008. Overland flow velocity and roughness properties in peatlands. Water Resources Research 44, https://doi.org/10.1029/2007WR006052.
    1. Huang C.,
    2. Bradford J.M.
    . 1992. Applications of a laser scanner to quantify soil microtopography. Soil Science Society of America Journal 56:14, https://doi.org/10.2136/sssaj1992.03615995005600010002x.
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Kleidon A.,
    2. Zehe E.,
    3. Ehret U.,
    4. Scherer U.
    . 2013. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale. Hydrology and Earth System Sciences 17:225–251, https://doi.org/10.5194/hess-17-225-2013.
    OpenUrlCrossRef
  15. ↵
    1. Li G.
    2009. Preliminary study of the interference of surface objects and rainfall in overland flow resistance. Catena 78:154–158, https://doi.org/10.1016/j.catena.2009.03.010.
    OpenUrlGeoRef
  16. ↵
    1. Li. L,
    2. Nearing M.A.,
    3. Nichols M.H.,
    4. Polyakov V.O.,
    5. Cavanaugh M.L.
    . 2019. Use terrestrial LiDAR to measure water erosion on stony plots. Accepted by Earth Surface Processes and Landforms.
  17. ↵
    1. Lv J.,
    2. Luo H.,
    3. Xie Y.
    . 2019. Effects of rock fragment content, size and cover on soil erosion dynamics of spoil heaps through multiple rainfall events. Catena 172:179–189, https://doi.org/10.1016/j.catena.2018.08.024.
    OpenUrl
  18. ↵
    1. Moran M.S.,
    2. Clarke T.R.,
    3. Kustas W.P.,
    4. Weltz M.,
    5. Amer S.A.
    . 1994. Evaluation of hydrologic parameters in a semiarid rangeland using remotely sensed spectral data. Water Resouces Research 30:1287–1297, https://doi.org/10.1029/93WR03066.
    OpenUrl
  19. ↵
    1. Nearing M.A.,
    2. Kimoto A.,
    3. Nichols M.H.,
    4. Ritchie J.C.
    . 2005. Spatial patterns of soil erosion and deposition in two small, semiarid watersheds. Journal of Geophysical Research Earth Surface 110(F4), https://doi.org/10.1029/2005JF000290.
  20. ↵
    1. Nearing M.A.,
    2. Polyakov V.O.,
    3. Nichols M.H.,
    4. Hernandez M.,
    5. Li L.,
    6. Zhao Y.,
    7. Armendariz G.
    . 2017. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope. Hydrology and Earth System Sciences 21:3221–3229, https://doi.org/10.5194/hess-21-3221-2017.
    OpenUrl
  21. ↵
    1. Nearing M.A.,
    2. Simanton J.R.,
    3. Norton L.D.,
    4. Bulygin S.J.,
    5. Stone J.
    . 1999. Soil erosion by surface water flow on a stony, semiarid hillslope. Earth Surface Processes and Landforms 24:677–686.
    OpenUrlCrossRefGeoRefWeb of Science
  22. ↵
    1. Nouwakpo S.K.,
    2. Williams C.J.,
    3. Al-Hamdan O.Z.,
    4. Weltz M.A.,
    5. Pierson F.,
    6. Nearing M.
    . 2016. A review of concentrated flow erosion processes on rangelands: Fundamental understanding and knowledge gaps. International Soil and Water Conservation Research 4:75–86, https://doi.org/10.1016/j.iswcr.2016.05.003.
    OpenUrl
  23. ↵
    1. Paige G.B.,
    2. Stone J.J.,
    3. Smith J.R.,
    4. Kennedy J.R.
    . 2004. The Walnut Gulch rainfall simulator: A computer-controlled variable intensity rainfall simulator. Applied Engineering in Agriculture 20:25–31, https://doi.org/10.13031/2013.15691.
    OpenUrlCrossRef
    1. Parsons A.J.
    1991. Size characteristics of sediment in interrill overland flow on a semiarid hillslope. Earth Surface Processes and Landforms 16:143–152.
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Parsons A.J.,
    2. Abrahams A.D.,
    3. Luk S.-H.
    . 1990. Hydraulics of interrill overland flow on a semi-arid hillslope, southern Arizona. Journal of Hydrology 117:255–273, https://doi.org/10.1016/0022-1694(90)90096-G.
    OpenUrlGeoRef
  25. ↵
    1. Parsons A.J.,
    2. Abrahams A.D.,
    3. Wainwright J.
    . 1994. On determining resistance to interrill overland flow. Water Resources Research 30(12):3515–3521.
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Pelletier J.D.
    2003. Drainage basin evolution in the Rainfall Erosion Facility: Dependence on initial conditions. Geomorphology 53:183–196, https://doi.org/10.1016/S0169-555X(02)00353-7.
    OpenUrlCrossRefGeoRefWeb of Science
  27. ↵
    1. Poesen J.,
    2. Lavee H.
    . 1994. Rock fragments in top soils: Significance and processes. Catena 23(1-2):1-28, https://doi.org/10.1016/0341-8162(94)90050-7.
    OpenUrlGeoRef
  28. ↵
    1. Poesen J.W.,
    2. Torri D.,
    3. Bunte K.
    . 1994. Effects of rock fragments on soil erosion by water at different spatial scales: A review. Catena 23(1-2):141-166, https://doi.org/10.1016/0341-8162(94)90058-2.
    OpenUrlGeoRef
  29. ↵
    1. Poesen J.W.,
    2. van Wesemael B.,
    3. Bunte K.,
    4. Benet A.S.
    . 1998. Variation of rock fragment cover and size along semiarid hillslopes: A case-study from southeast Spain. Geomorphology 23:323–335, https://doi.org/10.1016/S0169-555X(98)00013-0.
    OpenUrlCrossRefGeoRefWeb of Science
  30. ↵
    1. Polyakov V.,
    2. Nearing M.
    . 2019. A simple automated laser profile meter. Soil Science Society of America Journal 83:327, https://doi.org/10.2136/sssaj2018.10.0378.
    OpenUrl
  31. ↵
    1. Polyakov V.,
    2. Nearing M.A.,
    3. Stone J.
    . 2018a. Velocities of shallow overland flow on semiarid hillslopes. Earth Surface Processes and Landforms 43:2578–2583, https://doi.org/10.1002/esp.4416.
    OpenUrl
  32. ↵
    1. Polyakov V.,
    2. Stone J.,
    3. Holifield Collins C.,
    4. Nearing M.A.,
    5. Paige G.,
    6. Buono J.,
    7. Gomez-Pond R.L.
    . 2018b. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator. Earth System Science Data 10:19–26, https://doi.org/10.5194/essd-10-19-2018.
    OpenUrl
  33. ↵
    1. Rengers F.K.,
    2. McGuire L.A.,
    3. Kean J.W.,
    4. Staley D.M.,
    5. Hobley D.E.J.
    . 2016. Model simulations of flood and debris flow timing in steep catchments after wildfire. Water Resources Research 52:6041–6061, https://doi.org/10.1002/2015WR018176.
    OpenUrl
  34. ↵
    1. Rieke-Zapp D.,
    2. Poesen J.,
    3. Nearing M.A.
    . 2007. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion. Earth Surface Processes and Landforms 32:1063–1076, https://doi.org/10.1002/esp.1469.
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. Shaw C.F.
    1929. Erosion Pavement. Geographical Review 19:638-641, https://doi.org/10.2307/209694.
    OpenUrl
  36. ↵
    1. Simanton J.R.,
    2. Renard K.G.,
    3. Christiansen C.M.,
    4. Lane L.J.
    . 1994. Spatial distribution of surface rock fragments along catenas in Semiarid Arizona and Nevada, USA. Catena 23:29–42, https://doi.org/10.1016/0341-8162(94)90051-5.
    OpenUrlGeoRef
  37. ↵
    1. Simanton J.R.,
    2. Toy T.J.
    . 1994. The relation between surface rock-fragment cover and semiarid hillslope profile morphology. Catena 23:213–225, https://doi.org/10.1016/0341-8162(94)90069-8.
    OpenUrlGeoRef
  38. ↵
    1. Torri D.,
    2. Poesen J.
    . 1992. The effect of soil surface slope on raindrop detachment. Catena 19:561–578, https://doi.org/10.1016/0341-8162(92)90053-E.
    OpenUrlGeoRef
  39. ↵
    1. Torri D.,
    2. Sfalanga M.,
    3. Del Sette M.
    . 1987. Splash detachment: Runoff depth and soil cohesion. Catena 14:149–155, https://doi.org/10.1016/S0341-8162(87)80013-9.
    OpenUrlGeoRef
  40. ↵
    1. Van Wesemael B.,
    2. Poesen J.,
    3. De Figueiredo T.,
    4. Govers G.
    . 1996. Surface roughness evolution of soils containing rock fragments. Earth Surface Processes and Landforms 21:399–411, https://doi.org/10.1002/(SICI)1096-9837(199605)21:5<399::AID-ESP567>3.0.CO;2-M.
    OpenUrlGeoRef
  41. ↵
    1. Westhoff M.C.,
    2. Zehe E.
    . 2013. Maximum entropy production: Can it be used to constrain conceptual hydrological models? Hydrology and Earth System Sciences 17:3141-3157, https://doi.org/10.5194/hessd-9-11551-2012.
    OpenUrlCrossRef
  42. ↵
    1. Xia L.,
    2. Song X.,
    3. Fu N.,
    4. Cui S.,
    5. Li L.,
    6. Li H.,
    7. Li Y.
    . 2018. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrological Processes 32:792–804, https://doi.org/10.1002/hyp.11455.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (5)
Journal of Soil and Water Conservation
Vol. 75, Issue 5
September/October 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evolution of rock cover, surface roughness, and flow velocity on stony soil under simulated rainfall
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evolution of rock cover, surface roughness, and flow velocity on stony soil under simulated rainfall
L. Li, M.A. Nearing, V.O. Polyakov, M.H. Nichols, M.L. Cavanaugh
Journal of Soil and Water Conservation Sep 2020, 75 (5) 651-668; DOI: 10.2489/jswc.2020.00086

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evolution of rock cover, surface roughness, and flow velocity on stony soil under simulated rainfall
L. Li, M.A. Nearing, V.O. Polyakov, M.H. Nichols, M.L. Cavanaugh
Journal of Soil and Water Conservation Sep 2020, 75 (5) 651-668; DOI: 10.2489/jswc.2020.00086
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • erosion pavement
  • flow hydraulics
  • slope-velocity-equilibrium
  • soil erosion

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society