Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleSPECIAL RESEARCH SECTION: RESEARCH INTRODUCTION

Overview of the USDA Mid-Atlantic Regional Wetland Conservation Effects Assessment Project

S. Lee, G.W. McCarty, M.W. Lang and X. Li
Journal of Soil and Water Conservation November 2020, 75 (6) 684-694; DOI: https://doi.org/10.2489/jswc.2020.00097
S. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G.W. McCarty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.W. Lang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
X. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

    1. Andreas, B.K., and
    2. R. Lichvar
    . 1995. Floristic index for establishing assessment standards: A case study for Northern Ohio. Wetlands Research Program Technical Report WRP-DE-8. Vicksburg, MS: US Army Engineer Waterways Experiment Station.
  1. ↵
    1. Ator, S.W.,
    2. J.M. Denver,
    3. A.E. LaMotte, and
    4. A.J. Sekellick
    . 2013. A regional classification of the effectiveness of depressional wetlands at mitigating nitrogen transport to surface waters in the Northern Atlantic Coastal Plain. Reston, VA: US Department of the Interior, US Geological Survey.
  2. ↵
    1. Backhaus, P.J.,
    2. S. Lee,
    3. M. Nassry,
    4. G.W. McCarty,
    5. M.W. Lang, and
    6. R.P. Brooks
    . 2020. Evaluating a remote wetland functional assessment along an alternation gradient in coastal plain depressional wetlands. Journal of Soil and Water Conservation 75(6):727-738, doi:10.2489/jswc.2020.00094.
    OpenUrlCrossRef
  3. ↵
    1. Barbier, L.
    2013. Valuing ecosystem services for coastal wetland protection and restoration: Progress and challenges. Resources 2(3):213-230.
    OpenUrl
  4. ↵
    1. Beven, K.
    2006. A manifesto for the equifinality thesis. Journal of Hydrology 320(1-2):18-36.
    OpenUrlCrossRefGeoRefWeb of Science
  5. ↵
    1. Bullock, A., and
    2. M. Acreman
    . 2003. The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences 7(3):358–389.
    OpenUrlCrossRefGeoRefWeb of Science
  6. ↵
    1. Church, C.D.,
    2. P.J.A. Kleinman, and
    3. J.O. Miller
    . 2011. Trends in soil phosphorus in native, disturbed, and hydrologically restored agricultural wetlands. Abstract. Proceedings of the Soil and Water Conservation Society summer 2011 meeting, Washington, DC, July 17-20, 2011.
  7. ↵
    1. Cvetkovic, M., and
    2. P. Chow-Fraser
    . 2011. Use of ecological indicators to assess the quality of Great Lakes coastal wetlands. Ecological Indicators 11(6):1609-1622.
    OpenUrl
  8. ↵
    1. Denver, J.M.,
    2. S.W. Ator,
    3. M.W. Lang,
    4. T.R. Fisher,
    5. A.B. Gustafson,
    6. R. Fox,
    7. J.W. Clune, and
    8. G.W. McCarty
    . 2014. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States. Journal of Soil and Water Conservation 69(1):1-16. https://doi.org/10.2489/jswc.69.1.1.
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Du, L.,
    2. G.W. McCarty,
    3. X. Zhang,
    4. M.W. Lang,
    5. M.K. Vanderhoof,
    6. X. Li,
    7. C. Huang,
    8. S. Lee, and
    9. Z. Zou
    . 2020. Mapping forested wetland inundation in the Delmarva Peninsula, USA, using deep convolution neural networks. Remote Sensing (12)4:644.
    OpenUrl
  10. ↵
    1. Ducey, T.F.,
    2. J.O. Miller,
    3. M.W. Lang,
    4. A.A. Szogi,
    5. P.G. Hunt,
    6. D.E. Fenstermacher,
    7. M.C. Rabenhorst, and
    8. G.W. McCarty
    . 2015. Soil physicochemical conditions, denitrification rates, and nosZ abundance in North Carolina Coastal Plain restored wetlands. Journal of Environmental Quality 44 (3):1011-1022.
    OpenUrl
    1. Ervin, G.N.,
    2. B.D. Herman,
    3. J.T. Bried, and
    4. D.C. Holly
    . 2006. Evaluating non-native species and wetland indicator status as components of wetlands floristic assessment. Wetlands 26:1114–1129.
    OpenUrlCrossRef
  11. ↵
    1. Evenson, G.R.,
    2. C.N. Jones,
    3. D.L. McLaughlin,
    4. H.E. Golden,
    5. C.R. Lane,
    6. B. DeVries,
    7. L.C. Alexander,
    8. M.W. Lang,
    9. G.W. McCarty, and
    10. A. Sharifi
    . 2018. A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X 1:100002.
    OpenUrl
  12. ↵
    1. Fenstermacher, D.E.,
    2. M.C. Rabenhorst,
    3. M.W. Lang,
    4. G.W. McCarty, and
    5. B.A. Needelman
    . 2014. Distribution, morphometry, and land use of Delmarva Bays. Wetlands 34(6):1219-1228.
    OpenUrl
  13. ↵
    1. Fenstermacher, D.E.,
    2. M.C. Rabenhorst,
    3. M.W. Lang,
    4. G.W. McCarty, and
    5. B.A. Needelman
    . 2016. Carbon in natural, cultivated, and restored depressional wetlands in the mid-Atlantic coastal plain. Journal of Environmental Quality 45(2):743-750.
    OpenUrl
  14. ↵
    1. Fisher, J., and
    2. M. Acreman
    . 2004. Wetland nutrient removal: A review of the evidence. Hydrology and Earth System Sciences 8(4):673-685.
    OpenUrlCrossRefGeoRef
    1. Gurevich, J.,
    2. S.M. Scheiner, and
    3. G.A. Fox
    . 2006. The Ecology of Plants. Sunderland, MA: Sinauer.
    1. Hantush, M.M.,
    2. L. Kalin,
    3. S. Isik, and
    4. A. Yucekaya
    . 2013. Nutrient dynamics in flooded wetlands. I: Model development. Journal of Hydrologic Engineering 18(12):1709-1723.
    OpenUrlCrossRef
    1. Herman, K.D.,
    2. A.A. Reznicek,
    3. L.A. Masters,
    4. G.S. Wilhelm,
    5. M.R. Penskar, and
    6. W.W. Brodowicz
    . 1997. Floristic quality assessment: Development and application in the state of Michigan (USA). Natural Areas Journal 17: 265–279.
    OpenUrl
  15. ↵
    1. Højberg, A.L., and
    2. J.C. Refsgaard
    . 2005. Model uncertainty– parameter uncertainty versus conceptual models. Water Science & Technology 52(6):177-186.
    OpenUrl
  16. ↵
    1. Huang, C.,
    2. Y. Peng,
    3. M. Lang,
    4. I.Y. Yeo, and
    5. G. McCarty
    . 2014. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment 141:231-242.
    OpenUrl
  17. ↵
    1. Hublart, P.,
    2. D. Ruelland,
    3. A. Dezetter, and
    4. H. Jourde
    . 2015. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes. Hydrology and Earth System Sciences 19(5):2295-2314.
    OpenUrl
  18. ↵
    1. Hunt, P.G.,
    2. J.O. Miller,
    3. T.F. Ducey,
    4. M.W. Lang,
    5. A.A. Szogi, and
    6. G. McCarty
    . 2014. Denitrification in soils of hydrologically restored wetlands relative to natural and converted wetlands in the Mid-Atlantic coastal plain of the USA. Ecological Engineering 71:438-447.
    OpenUrl
  19. ↵
    1. Jin, H.,
    2. C. Huang,
    3. M.W. Lang,
    4. I.Y. Yeo, and
    5. S.V. Stehman
    . 2017. Monitoring of wetland inundation dynamics in the Delmarva Peninsula using Landsat time-series imagery from 1985 to 2011. Remote Sensing of Environment 190:26-41.
    OpenUrl
  20. ↵
    1. Jones, C.N.,
    2. G.R. Evenson,
    3. D.L. McLaughlin,
    4. M.K. Vanderhoof,
    5. M.W. Lang,
    6. G.W. McCarty,
    7. H.E. Golden,
    8. C.R. Lane, and
    9. L.C. Alexander
    . 2018. Estimating restorable wetland water storage at landscape scales. Hydrological Processes 32(2):305-313.
    OpenUrl
  21. ↵
    1. R. Tiner,
    2. M. Lang, and
    3. V. Klemas
    1. Lang, M.,
    2. L. Bourgeau-Chavez,
    3. R. Tiner, and
    4. V. Klemas
    . 2015a. Advances in remotely sensed data and techniques for wetland mapping and monitoring. In Remote Sensing of Wetlands: Applications and Advances, eds. R. Tiner, M. Lang, and V. Klemas, 79-116. Boca Raton, FL: CRC Press.
  22. ↵
    1. Lang, M.,
    2. V. Kim,
    3. G.W. McCarty,
    4. X. Li,
    5. I.Y. Yeo,
    6. C. Huang, and
    7. L. Du
    . 2020. Improved detection of inundation below the forest canopy using normalized LiDAR intenstidy data. Remote Sensing (12)4:707.
    OpenUrl
  23. ↵
    1. Lang, M.W., and
    2. G.W. McCarty
    . 2009. Lidar intensity for improved detection of inundation below the forest canopy. Wetlands 29(4):1166-1178.
    OpenUrlCrossRef
  24. ↵
    1. Lang, M., and
    2. G.W. McCarty
    . 2019. Depressional Wetland water storage volume on the Delmarva Peninsula. USDA NRCS Conservation Effects Assessment Project Science Note, 1–8. Washington, DC: USDA Natural Resources Conservation Service.
  25. ↵
    1. Lang, M.,
    2. G. McCarty,
    3. T. Ducey,
    4. P. Hunt,
    5. J. Miller,
    6. M. Rabenhorst,
    7. A. Baldwin,
    8. D. Fenstermacher,
    9. M. Yepse,
    10. E. McFarland,
    11. A. Sharifi,
    12. C. Church,
    13. J. Denver,
    14. S. Ator,
    15. J. Mitchell,
    16. D. Whigham, and
    17. M. Walbridge
    . 2015b. Effects and Effectiveness of USDA Wetland Convervation Practice in the Mid-Altantic Region: A Report on the Conversation Effects Assessment Project Mid-Atlantic Regional Wetland Assessment 2008-2015. Washington, DC: USDA Natural Resources Conservation Service.
  26. ↵
    1. Lang, M.,
    2. G.W. McCarty,
    3. O. McDonough,
    4. R. Oesterling, and
    5. W. Wilen
    . 2012. Enhanced detection of wetland-stream connectivity using LiDAR. Wetlands 32:461-473.
    OpenUrlCrossRef
    1. Lang, M.W.,
    2. G.W. McCarty,
    3. R. Oesterling, and
    4. I.Y. Yeo
    . 2013. Topographic metrics for improved mapping of forested wetlands. Wetlands 33(1):141–155.
    OpenUrlCrossRef
  27. ↵
    1. R. Tiner,
    2. M. Lang, and
    3. V. Klemas
    1. Lang, M.,
    2. S. Purkis,
    3. V. Klemas, and
    4. R. Tiner
    . 2015c. Promising developments and ruture challenges for remote sensing of wetlands. In Remote Sensing of Wetlands: Applications and Advances, eds. R. Tiner, M. Lang, and V. Klemas, 533-544. Boca Raton, FL: CRC Press.
  28. ↵
    1. Lee, S.,
    2. G. McCarty,
    3. G. Moglen,
    4. M. Lang,
    5. C.N. Jones,
    6. M. Palmer,
    7. A.M. Sadeghi,
    8. I.–Y Yeo,
    9. M. Anderson,
    10. A.M. Sadeghi, and
    11. M.C. Rabenhorst
    . 2020a. Seasonal drivers of geographically isolated wetland (GIW) hydrology in a low-gradient, coastal plain landscape. Journal of Hydrology 583:124608.
    OpenUrl
  29. ↵
    1. Lee, S.,
    2. G.W. McCarty,
    3. G.E. Moglen,
    4. M.W. Lang,
    5. A.M. Sadeghi,
    6. T.R. Green,
    7. I.Y. Yeo, and
    8. M.C. Rabenhorst
    . 2019a. Effects of subsurface soil characteristics on wetland–groundwater interaction in the coastal plain of the Chesapeake Bay watershed. Hydrological Processes 33(2):305-315.
    OpenUrl
  30. ↵
    1. Lee, S.,
    2. H. Yen,
    3. I.-Y. Yeo,
    4. G.E. Moglen,
    5. M.C. Rabenhorst, and
    6. G.W. McCarty
    . 2020b. Use of multiple modules and Bayesian Model Averaging to assess structural uncertainty of catchment-scale wetland modeling in a Coastal Plain landscape. Journal of Hydrology 582:124544.
    OpenUrl
  31. ↵
    1. Lee, S.,
    2. I.–Y. Yeo,
    3. W.M. Lang,
    4. W.G. McCarty,
    5. A.M. Sadeghi,
    6. A. Sharifi,
    7. H. Jin, and
    8. Y. Liu
    . 2019b. Improving the catchment scale wetland modeling using remotely sensed data. Environmental Modelling & Software 12:104069.
    OpenUrl
  32. ↵
    1. Lee, S.,
    2. I.Y. Yeo,
    3. M.W. Lang,
    4. A.M. Sadeghi,
    5. G.W. McCarty,
    6. G.E. Moglen, and
    7. G.R. Evenson
    . 2018. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Journal of Environmental Management 223:37-48.
    OpenUrl
  33. ↵
    1. Li, X.,
    2. G.W. McCarty,
    3. M.W. Lang,
    4. T. Ducey,
    5. P. Hunt, and
    6. J. Miller
    . 2018. Topographic and physicochemical controls on soil denitrification in prior converted croplands located on the Delmarva Peninsula, USA. Geoderma 309:41-49.
    OpenUrl
    1. Lichvar, R.W., and
    2. J.T. Kartesz
    . 2009. North American Digital Flora: National Wetland Plant List, version 2.4.0. Hanover, NH, and Chapel Hill, NC: US Army Corps of Engineers, Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, and BONAP. https://wetland_plants.usace.army.mil.
    1. Lopez, R.D., and
    2. M.S. Fennessy
    . 2002. Testing the floristic quality assessment index as an indicator of wetland condition. Ecological Applications 12:487–497.
    OpenUrl
  34. ↵
    1. McDonough, O.T.,
    2. M.W. Lang,
    3. J.D. Hosen, and
    4. M.A. Palmer
    . 2015. Surface hydrologic connectivity between Delmarva Bay wetlands and nearby streams along a gradient of agricultural alteration. Wetlands 35(1):41-530
    OpenUrl
  35. ↵
    1. McFarland, E.K.,
    2. M. LaForgia,
    3. M. Yepsen,
    4. D.F. Whigham,
    5. A.H. Baldwin, and
    6. M.W. Lang
    . 2016. Plant biomass and nutrients (C, N and P) in natural, restored and prior converted depressional wetlands in the Mid-Atlantic Coastal Plain, US. Folia Geobotanica 51(3):267-283.
    OpenUrl
  36. ↵
    1. Meli, P.,
    2. J.M.R. Benayas,
    3. P. Balvanera, and
    4. M.M. Ramos
    . 2014. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: A meta-analysis. PloS one 9(4):e93507.
    OpenUrl
  37. ↵
    1. Mitchell,
    2. J.C.
    2016. Restored wetlands in mid-Atlantic agricultural landscapes enhance species richness of amphibian assemblages. Journal of Fish and Wildlife Management 7(2):490-498.
    OpenUrl
  38. ↵
    1. Palardy, C.A.
    2018. Impact of Restoration Activity on Wetland Soil Properties and Functions. Ph.D dissertation, University of Maryland.
  39. ↵
    1. Qi, J.,
    2. X. Zhang,
    3. S. Lee,
    4. G.E. Moglen,
    5. A.M. Sadeghi, and
    6. G.W. McCarty
    . 2019. A coupled surface water storage and subsurface water dynamics model in SWAT for characterizing hydroperiod of geographically isolated wetlands. Advances in Water Resources 131:1033810.
    OpenUrl
    1. Reed, P.B.
    1988. National List of Plant Species That Occur in Wetlands: 1988 National Summary. Washington, DC: US Fish and Wildlife Service.
  40. ↵
    1. Renard, B.,
    2. D. Kavetski,
    3. G. Kuczera,
    4. M. Thyer, and
    5. S.W. Franks
    . 2010. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research 46(5):W05521.
    OpenUrl
  41. ↵
    1. Sharifi, A.,
    2. M.W. Lang,
    3. G.W. McCarty,
    4. M.A. Sadeghi,
    5. S. Lee,
    6. H. Yen,
    7. J. Jeong, and
    8. M.C. Rabenhorst
    . 2016. Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration – A paired watershed study. Journal of Hydrology 541:1088-1103.
    OpenUrl
  42. ↵
    1. Sharifi, A.,
    2. S. Lee,
    3. G.W. McCarty,
    4. M.W. Lang,
    5. J. Jeong,
    6. A.M. Sadeghi, and
    7. M.C. Rabenhorst
    . 2019. Enhancement of Agricultural Policy/Environment eXtender Model (APEX) Model to assess effectiveness of wetland water quality functions. Water 11(3):606.
    OpenUrl
  43. ↵
    1. USDA NRCS (USDA Natural Resources Conservation Service)
    . 2010. Conservation Practice Standard Wetland Restoration. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026340.pdf.
  44. ↵
    1. USEPA (US Evrionmental Protection Agency)
    . 2002. Methods for Evaluating Wetland Condition: Vegetation-Based Indicators of Wetland Nutrient Enrichment. Washington, DC: Office of Water, US Environmental Protection Agency.
  45. ↵
    1. Yen, H.,
    2. R.T. Bailey,
    3. M. Arabi,
    4. M. Ahmadi,
    5. M.J. White, and
    6. J.G. Arnold
    . 2014. The role of interior watershed processes in improving parameter estimation and performance of watershed models. Journal of Environmental Quality 43(5):1601-1613.
    OpenUrl
  46. ↵
    1. Yeo, I.–Y.,
    2. M.W. Lang,
    3. S. Lee,
    4. G.W. McCarty,
    5. A.M. Sadeghi,
    6. O. Yetemen, and
    7. C. Huang
    . 2019a. Mapping the landscape-level hydrologic connectivity of headwater wetlands to downstream water: A geospatial modelling approach – Part I. Science of the Total Environment 653:1546-1556.
    OpenUrlCrossRef
  47. ↵
    1. Yeo, I.–Y.,
    2. S. Lee,
    3. M.W. Lang,
    4. O. Yetemen,
    5. G.W. McCarty,
    6. A.M. Sadeghi, and
    7. G. Evenson
    . 2019b. Mapping the landscape-level hydrologic connectivity of headwater wetlands to downstream water: a geospatial modelling approach – Part 2. Science of the Total Environment 653:1557 - 1570
    OpenUrlCrossRef
  48. ↵
    1. Yepsen, M.,
    2. A.H. Baldwin,
    3. D.F. Whigham,
    4. E. McFarland,
    5. M. LaForgia, and
    6. M. Lang
    . 2014. Agricultural wetland restorations on the USA Atlantic Coastal Plain achieve diverse native wetland plant communities but differ from natural wetlands. Agriculture, Ecosystems, and Environment 197:11-20.
    OpenUrl
  49. ↵
    1. Zedler, J.B., and
    2. S. Kercher
    . 2005. Wetland resources: Status, trends, ecosystem services, and restorability. Annual Review of Environment and Resources 30:39-74.
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Zhao, Q.,
    2. J. Bai,
    3. L. Huang,
    4. B. Gu,
    5. Q. Lu, and
    6. Z. Gao
    . 2016. A review of methodologies and success indicators for coastal wetland restoration. Ecological Indicators 60:442-452.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (6)
Journal of Soil and Water Conservation
Vol. 75, Issue 6
November/December 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Overview of the USDA Mid-Atlantic Regional Wetland Conservation Effects Assessment Project
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 1 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Overview of the USDA Mid-Atlantic Regional Wetland Conservation Effects Assessment Project
S. Lee, G.W. McCarty, M.W. Lang, X. Li
Journal of Soil and Water Conservation Nov 2020, 75 (6) 684-694; DOI: 10.2489/jswc.2020.00097

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Overview of the USDA Mid-Atlantic Regional Wetland Conservation Effects Assessment Project
S. Lee, G.W. McCarty, M.W. Lang, X. Li
Journal of Soil and Water Conservation Nov 2020, 75 (6) 684-694; DOI: 10.2489/jswc.2020.00097
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Disclaimer
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • Wetlands in agricultural landscapes-- Significant findings and recent advances from CEAP-Wetlands
  • Google Scholar

More in this TOC Section

  • Development of a novel framework for modeling field-scale conservation effects of depressional wetlands in agricultural landscapes
  • Wetlands in agricultural landscapes— Significant findings and recent advances from CEAP-Wetlands
  • Improving the ability to include freshwater wetland plants in process-based models
Show more SPECIAL RESEARCH SECTION: RESEARCH INTRODUCTION

Similar Articles

Keywords

  • MIAR study
  • prior converted croplands
  • restoration
  • wetlands
  • wetland functions

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society