Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleRESEARCH SECTION

SWAT vs. RUSLE: Which better predicts benthic habitat condition?

L. Scott and A. Villamagna
Journal of Soil and Water Conservation November 2020, 75 (6) 765-774; DOI: https://doi.org/10.2489/jswc.2020.00183
L. Scott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Villamagna
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • References
  • PDF
Loading

References

  1. ↵
    1. Abrahart, R.J., and
    2. S.M. White
    . 2001. Modeling sediment transfer in Malawi: Comparing back propagation neural network solutions against a multiple linear regression benchmark using small datasets. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans, and Atmosphere 26(1):19-24, doi:10.1016/S1464-1909(01)85008-5.
    OpenUrlCrossRefGeoRef
  2. ↵
    1. Arnold, J.G.,
    2. D.N. Moriasi,
    3. P.W. Gassman,
    4. K.C. Abbaspour,
    5. M.J. White,
    6. R. Srinivasan,
    7. C. Santhi,
    8. R.D. Harmel,
    9. A. van Griensven,
    10. M.W. Van Liew,
    11. N. Kannan, and
    12. M.K. Jha
    . 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE 55(4):1491-1508.
    OpenUrlCrossRef
  3. ↵
    1. Bilotta, G., and
    2. R. Brazier
    . 2008. Understanding the influence of suspended solids on water quality and aquatic biota. Water Research 42:2849-2861.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Braccia, A., and
    2. J.R. Voshell Jr..
    2006. Benthic macroinvertebrate fauna in small streams used by cattle in the Blue Ridge Mountains, Virginia. Northeastern Naturalist 13(2):269-286, http://dx.doi.org/10.1656/1092-6194(2006)13[269:BMFISS]2.0.CO;2.
    OpenUrl
  5. ↵
    1. Brady, N., and
    2. R. Weil
    . 2008. The Nature and Properties of Soils, 14th edition. Columbus, OH: Pearson.
  6. ↵
    1. Collins, A.L.,
    2. P.S. Naden,
    3. D.A. Sear,
    4. J.I. Jones,
    5. I.D. Foster, and
    6. K. Morrow
    . 2011. Sediment targets for informing river catchment management: International experience and prospects. Hydrological Processes 25(13). https://doi.org/10.1002/hyp.7965.
  7. ↵
    1. ESRI (Environmental Systems Research Institute)
    . 2012. ArcGIS Desktop: Release 10.2. Redlands, CA: Environmental Systems Research Institute.
  8. ↵
    1. Griensven, A.V.,
    2. S. Maharjan, and
    3. T. Alemayehu
    . 2014. Improved simulation of evapotranspiration for land use and climate change impact analysis at catchment scale. Proceedings of the International Congress on Environmental Modelling and Software conference, June 15-19, 2014, San Diego, CA.
  9. ↵
    1. Hair, J.F.,
    2. W.C. Black,
    3. B.J. Babin, and
    4. R.E. Anderson
    . 1995. Multivariate Data Analysis, 7th edition. New York: Macmillan.
  10. ↵
    1. Holl, K.D., and
    2. R.B. Howarth
    . 2001. Paying for restoration. Restoration Ecology 8(3) https://doi.org/10.1046/j.1526-100x.2000.80037.x.
  11. ↵
    1. Holmes, T.P.,
    2. J.C. Bergstrom,
    3. E. Huszar,
    4. S.B. Kask, and
    5. F. Orr III.
    2004. Contingent valuation, net marginal benefits, and the scale of riparian ecosystem restoration. Ecological Economics 49(1):19-30.
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Homer, C.G.,
    2. J.A. Dewitz,
    3. L. Yang,
    4. S. Jin,
    5. P. Danielson,
    6. G. Xian,
    7. J. Coulston,
    8. N.D. Herold,
    9. J.D. Wickham, and
    10. K. Megown
    . 2015. Completion of the 2011 National Land Cover Database for the conterminous United States-representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing 81(5):345-354.
    OpenUrl
  13. ↵
    1. Independent Petroleum Association of America
    . 2004. Guidance document: Reasonable and prudent practices for stabilization (RAPPS) of oil and gas construction sites (Appendix A) (Tech.). Washington, DC: Independent Petroleum Association of America.
  14. ↵
    1. Jabbar, M.
    2003. Application of GIS to estimate soil erosion using RUSLE. Geospatial Information Science 6(1):34-37.
    OpenUrl
  15. ↵
    1. Jack, K.,
    2. B. Leimona, and
    3. P. Ferraro
    . 2008. A revealed preference approach to estimating supply curves for ecosystem services: Use of auctions to set payments for soil erosion control in Indonesia. Conservation Biology 23(2):359-367.
    OpenUrl
  16. ↵
    1. Jenkins, R., and
    2. N. Burkhead
    . 1994. Freshwater fishes of Virginia. Bethesda, MD: American Fisheries Society.
  17. ↵
    1. Kalcic, M.,
    2. I. Chaubey, and
    3. J. Frankenberger
    . 2015. Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries. International Journal for Agricultural and Biological Engineering 8(3): 69-79, doi:10.3965/j.ijabe.20150803.951.
    OpenUrlCrossRef
  18. ↵
    1. Kinnell, P.I.
    2000. The effect of slope length on sediment concentrations associated with side-slope erosion. Soil Science Society of America Journal 64(3):1004-1008, doi:10.2136/sssaj2000.6431004x.
    OpenUrlCrossRefWeb of Science
  19. ↵
    1. Donald F. Hayes
    1. Langendoen, E.J.,
    2. A. Simon, and
    3. R.E. Thomas
    . 2001. CONCEPTS: A process-based modeling tool to evaluate stream-corridor restoration designs, ed. Donald F. Hayes. Paper presented at the 2001 Wetlands Engineering & River Restoration Conference. Reston, VA: American Society of Civil Engineers.
  20. ↵
    1. Lim, K.,
    2. M. Sagong,
    3. B. Engel,
    4. Z. Tang,
    5. J. Choi, and
    6. K. Kim
    . 2005. GIS-based sediment assessment tool. CATENA 64:61-80.
    OpenUrlGeoRef
    1. Louis Berger Group Inc.
    2006. Benthic TMDL development for the Roanoke River, Virginia. Washington, DC: The Louis Berger Group Inc.
  21. ↵
    1. Mayer, P.M.,
    2. S.K. Reynolds,
    3. M.D. McCutchen, and
    4. T.J. Canfield
    . 2007. Meta-analysis of nitrogen removal in riparian buffers. Journal of Environmental Quality 36(4):1172-1180.
    OpenUrlCrossRefPubMedWeb of Science
  22. ↵
    1. Moriasi, D.N.,
    2. J.G. Arnold,
    3. M.W. Van Liew,
    4. R.L. Bingner,
    5. R.D. Harmel, and
    6. T.L. Veith
    . 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3):885-900.
    OpenUrlCrossRefWeb of Science
  23. ↵
    1. NOAA NCDC (National Oceanic and Atmospheric Administration National Climate Data Center)
    . 2016. Daily weather records. Washington, DC: National Oceanic and Atmospheric Administration. https://www.ncdc.noaa.gov/cdo-web/datatools/records.
  24. ↵
    1. Novotny, N.
    2003. Water Quality: Diffuse Pollution and Watershed Management. Boston, MA: Wiley.
  25. ↵
    1. O’Driscoll, M.A., and
    2. D.R. DeWalle
    . 2006. Stream-air temperature relations to classify stream-groundwater interactions in a karst setting, central Pennsylvania, USA. Journal of Hydrology 329(1-2):140-153, doi:10.1016/j.jhydrol.2006.02.010.
    OpenUrlCrossRefGeoRefWeb of Science
  26. ↵
    1. Perry, L.G.,
    2. L.V. Reynolds,
    3. T.J. Beechie,
    4. M.J. Collins, and
    5. P.B. Shafroth
    . 2015. Incorporating climate change projections into riparian restoration planning and design. Ecohydroloy 8(5):863-879.
    OpenUrl
  27. ↵
    1. PRISM Climate Group
    . 2014-2015. PRISM datasets for US Monthly Precipitation 2014-15. Corvallis, OR: Oregon State University. http://prism.oregonstate.edu/recent/.
  28. ↵
    1. Renard, K.,
    2. G. Foster,
    3. G. Weesies,
    4. D. McCool, and
    5. D. Yoder
    . 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook 703. Washington, DC: USDA Agricultural Research Service.
  29. ↵
    1. Rosenberger, A., and
    2. P. Angermeier
    . 2003. Ontogenetic shifts in habitat use by the endangered Roanoke logperch (Percina rex). Freshwater Biology 48(9):1563-1577.
    OpenUrl
  30. ↵
    1. Scott, L.
    2016. Assessing Statistical Instream Sediment Models as an Approach to Prioritize Riparian Restoration in Two Virginia River Basins. Master’s thesis, Plymouth State University. https://digitalcommons.plymouth.edu/etd/111.
  31. ↵
    1. Scott, L.,
    2. A. Villamagna, and
    3. P. Angermeier
    . 2018. A new modeling approach to prioritize riparian restoration to reduce sediment loading in two Virginia river basins. Environmental Management 62(4):721-739, https://doi.org/10.1007/s00267-018-1078-6.
    OpenUrl
  32. ↵
    1. Seelbach, P.W.,
    2. L.C. Hinz,
    3. M.J. Wiley, and
    4. A.R. Cooper
    . 2011. Use of multiple linear regression to estimate flow regimes for all rivers across Illinois, Michigan, and Wisconsin (Rep. No. 2095). Lansing, MI: Michigan Department of Natural Resources Fisheries Division.
  33. ↵
    1. Soil Survey Staff
    . 2016. USDA Natural Resources Conservation Service, Soil Survey Geographic (SSURGO) Database. Washington, DC: USDA Natural Resources Conservation Service. https://sdmdataaccess.sc.egov.usda.gov.
  34. ↵
    1. Trimble, S.W.
    1994. Erosional effects of cattle on streambanks in Tennessee, U.S.A. Earth Surface Processes and Landforms 19(5):451-464, doi:10.1002/esp.3290190506.
    OpenUrlCrossRefGeoRefWeb of Science
  35. ↵
    1. USACE (US Army Corps of Engineers)
    . 2016. Philpott Reservoir Outflow Data 2000-2014. Washington, DC: United States Army Corps of Engineers. http://epec.saw.usace.army.mil/phil.htm.
  36. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2010. 30-meter resolution digital elevation model for Virginia. Geospatial Data Gateway. Washington, DC: USDA Natural Resources Conservation Service. https://gdg.sc.egov.usda.gov/.
  37. ↵
    1. USGS (US Geological Survey)
    . 2015a. USGS Surface-Water Daily Data for the Nation. Reston, VA: US Geological Survey. https://waterdata.usgs.gov/nwis/dv/?referred_module=sw.
  38. ↵
    1. USGS
    . 2015b. Physiographic divisions of the conterminous U.S. Reston, VA: US Geological Survey. https://water.usgs.gov/GIS/metadata/usgswrd/XML/physio.xml.
  39. ↵
    1. VA Department of Conservation and Recreation
    . 2004. The Virginia stream restoration and stabilization best management practices guide. Richmond, VA: Virginia Department of Conservation and Recreation. https://www.deq.virginia.gov/Portals/0/DEQ/Water/Publications/BMPGuide.pdf.
  40. ↵
    1. VA Department of Mines, Minerals, and Energy
    . 2012. Sinkholes and kart terrain. Big Stone Gap, VA: VA Department of Mines, Minerals, and Energy. https://www.dmme.virginia.gov/dgmr/sinkholes.shtml.
  41. ↵
    1. Wischmeier, W.H., and
    2. J.V. Mannering
    . 1969. Relation of soil properties to its erodibility. Soil Science Society of America Journal 33(1):131-137, doi:10.2136/sssaj1969.03615995003300010035x.
    OpenUrlCrossRef
  42. ↵
    1. J.E. Parsons,
    2. D.L. Thomas, and
    3. R.L. Huffman
    1. Yoder, D.C.,
    2. G.R. Foster,
    3. G.A. Weesies,
    4. K.G. Renard,
    5. D.K. McCool, and
    6. J.B. Lown
    . 2004. Evaluation of the RUSLE soil erosion model [Editorial]. In Agricultural Non-Point Source Water Quality Models; Their use and Application, eds. J.E. Parsons, D.L. Thomas, and R.L. Huffman. Southern Cooperative Series Bulletin #398, July, 2001. Southern Association of Agricultural Experiment Station Directors.
  43. ↵
    1. Young, R.A., and
    2. J.L. Wiersma
    . 1973. The role of rainfall impact in soil detachment and transport. Water Resources Research 9(6). https://doi.org/10.1029/WR009i006p01629.
  44. ↵
    1. Zaimes, G.N.,
    2. R.C. Schultz, and
    3. T.M. Isenhart
    . 2006. Riparian land uses and precipitation influences on stream bank erosion in central Iowa. Journal of the American Water Resources Association 42(1):83-97, doi:10.1111/j.1752-1688.2006.tb03825.x.
    OpenUrlCrossRefGeoRef
  45. ↵
    1. Zhang, X.,
    2. R. Srinivasan,
    3. J. Arnold,
    4. R.C. Izaurralde, and
    5. D. Bosch
    . 2011. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework. Hydrological Processes 25(14):2313-2320, doi:10.1002/hyp.8058.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 75 (6)
Journal of Soil and Water Conservation
Vol. 75, Issue 6
November/December 2020
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
SWAT vs. RUSLE: Which better predicts benthic habitat condition?
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
SWAT vs. RUSLE: Which better predicts benthic habitat condition?
L. Scott, A. Villamagna
Journal of Soil and Water Conservation Nov 2020, 75 (6) 765-774; DOI: 10.2489/jswc.2020.00183

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
SWAT vs. RUSLE: Which better predicts benthic habitat condition?
L. Scott, A. Villamagna
Journal of Soil and Water Conservation Nov 2020, 75 (6) 765-774; DOI: 10.2489/jswc.2020.00183
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Comparing the short- and long-term impacts of subsurface drainage installation on soil physical and biological properties
  • Patterns and associations between dominant crop productions and water quality in an irrigated watershed
  • Estimating landowners’ willingness to accept payments for nature-based solutions in eastern North Carolina for flood hazard mitigation using the contingent valuation method
Show more Research Section

Similar Articles

Keywords

  • decision-support
  • prioritization
  • sediment
  • watershed modeling

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society