Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Erosion and sediment delivery in southern Iowa watersheds: Implications for conservation planning

M.T. Streeter, K.E. Schilling, C.L. Burras and C.F. Wolter
Journal of Soil and Water Conservation March 2021, 76 (2) 103-115; DOI: https://doi.org/10.2489/jswc.2021.00125
M.T. Streeter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.E. Schilling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.L. Burras
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.F. Wolter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Alexander, E.B.
    1988. Rates of soil formation: Implications for soil-loss tolerance. Soil Science 145(1):37-45.
    OpenUrl
  2. ↵
    1. Asell, A.
    2019. Catchment Tools. Des Moines, IA: Iowa Department of Natural Resources.
  3. ↵
    1. Beck, W.,
    2. T. Isenhart,
    3. P. Moore,
    4. K. Schilling,
    5. R. Schultz, and
    6. M. Tomer
    . 2018. Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, Walnut Creek, Iowa, USA. Water 10(2):111.
    OpenUrl
  4. ↵
    1. Bhowmik, N.G.,
    2. J.R. Adams,
    3. A.P. Bonini,
    4. A.M. Klock, and
    5. M. Demissie
    . 1986. Sediment Loads of Illinois Streams and Rivers. Champaign, IL: Illinois State Water Survey.
  5. ↵
    1. Bhowmik, N.G.,
    2. A.P. Bonini,
    3. W.C. Bogner, and
    4. R.P. Byrne
    . 1980. Hydraulics of Flow and Sediment Transport in the Kankakee River in Illinois. Champaign, IL: Illinois State Water Survey.
  6. ↵
    1. Bracmort, K.S.,
    2. M. Arabi,
    3. J. Frankenberger,
    4. B.A. Engel, and
    5. J.G. Arnold
    . 2006. Modeling long-term water quality impact of structural BMPs. Transactions of the ASABE 49(2):367-374.
    OpenUrl
  7. ↵
    1. Brown, L.R., and
    2. E.C. Wolf
    . 1984. Soil Erosion: Quiet Crisis in the World Economy. Worldwatch Paper 60. Washington, DC: Worldwatch Institute.
  8. ↵
    1. Carpenter, S.R.,
    2. N.F. Caraco,
    3. D.L. Correll,
    4. R.W. Howarth,
    5. A.N. Sharpley, and
    6. V.H. Smith
    . 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8(3):559-568.
    OpenUrlCrossRefGeoRefWeb of Science
  9. ↵
    1. Chen, T.,
    2. R.-Q. Niu,
    3. P.-X. Li,
    4. L.-P. Zhang, and
    5. B. Du
    . 2011. Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: A case study in Miyun Watershed, North China. Environmental Earth Sciences 63(3):533-541.
    OpenUrl
  10. ↵
    1. Chow, V.T.
    1959. Open Channel Hydraulics. New York: McGraw-Hill Book Company, Inc.
  11. ↵
    1. Christianson, R.,
    2. L. Christianson,
    3. C. Wong,
    4. M. Helmers,
    5. G. McIsaac,
    6. D. Mulla, and
    7. M. McDonald
    . 2018. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. Journal of Environmental Management 206:1072-1080.
    OpenUrl
  12. ↵
    1. Collins, A.,
    2. Y. Zhang,
    3. D. Duethmann,
    4. D. Walling, and
    5. K. Black
    . 2013. Using a novel tracing-tracking framework to source fine-grained sediment loss to watercourses at sub-catchment scale. Hydrological Processes 27(6):959-974.
    OpenUrl
  13. ↵
    1. Cooke, M.P.,
    2. H.M. Talbot, and
    3. T. Wagner
    . 2008. Tracking soil organic carbon transport to continental margin sediments using soil-specific hopanoid biomarkers: A case study from the Congo fan (ODP site 1075). Organic Geochemistry 39(8):965-971.
    OpenUrlGeoRef
  14. ↵
    1. Cruse, R.,
    2. D. Flanagan,
    3. J. Frankenberger,
    4. B. Gelder,
    5. D. Herzmann,
    6. D. James,
    7. W. Krajewski,
    8. M. Kraszewski,
    9. J. Laflen, and
    10. J. Opsomer
    . 2006. Daily estimates of rainfall, water runoff, and soil erosion in Iowa. Journal of Soil and Water Conservation 61(4):191-199.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. DeWitt, T.A.
    , 1981. Soil Survey of Cerro Gordo County, Iowa. USDA Soil Conservaion Servivce.
  16. ↵
    1. Fischer, R.A., and
    2. J.C. Fischenich
    . 2000. Design Recommendations for Riparian Corridors and Vegetated Buffer Strips. Vicksburg, MS: US Army Engineer Research and Development Center.
  17. ↵
    1. Gassman, P.W.,
    2. J. Tisl,
    3. E. Palas,
    4. C. Fields,
    5. T. Isenhart,
    6. K. Schilling,
    7. C. Wolter,
    8. L. Seigley, and
    9. M. Helmers
    . 2010. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned. Journal of Soil and Water Conservation 65(6):381-392. doi:10.2489/jswc.65.6.381.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Gomez, B.,
    2. K. Banbury,
    3. M. Marden,
    4. N.A. Trustrum,
    5. D.H. Peacock, and
    6. P.J. Hoskin
    . 2003. Gully erosion and sediment production: Te Weraroa Stream, New Zealand. Water Resources Research 39(7):1187. doi:10.1029/2002WR001342.
    OpenUrlCrossRef
  19. ↵
    1. Hirsch, R.M.
    2014. Large biases in regression-based constituent flux estimates: Causes and diagnostic tools. JAWRA: Journal of the American Water Resources Association 50(6):1401-1424.
    OpenUrl
  20. ↵
    1. Illinois Environmental Protection Agency and Illinois Department of Agriculture
    . 2014. Illinois Nutrient Loss Reduction Strategy. Springfield, IL: Illinois Environmental Protection Agency.
  21. ↵
    1. Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources, and Iowa State University
    . 2013. Iowa Nutrient Reduction Strategy: A science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. Ames, IA: Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources, and Iowa State University.
  22. ↵
    1. Iowa Department of Natural Resources
    . 2018a. Iowa GeoData Portal. https://geodata.iowa.gov/.
  23. ↵
    1. Iowa Department of Natural Resources
    . 2018b. Nonpoint Source Plan. https://www.iowadnr.gov/environmental-protection/water-quality/watershed-improvement/nonpoint-source-plan.
  24. ↵
    1. Iowa Department of Natural Resources
    . 2019. AQuIA. https://programs.iowadnr.gov/aquia/.
  25. ↵
    1. Iowa Flood Center
    . 2019a. Iowa Flood Information System. https://ifis.iowafloodcenter.org/ifis/.
  26. ↵
    1. Iowa Flood Center
    . 2019b. Stream-Stage Sensors. https://iowafloodcenter.org/projects/iowa-watershed-approach-hydrologic-network-4-3/.
  27. ↵
    1. Iowa State University
    . 2019. Iowa BMP Mapping Project. https://www.gis.iastate.edu/gisf/projects/conservation-practices.
  28. ↵
    1. Iowa State University Department of Agronomy
    . 2019a. Iowa Daily Erosion Project. https://www.dailyerosion.org/.
  29. ↵
    1. Iowa State University Department of Agronomy
    . 2019b. Iowa Environmental Mesonet. https://mesonet.agron.iastate.edu/.
  30. ↵
    1. Johnson, H., and
    2. W. Moldenhauer
    . 1970. Pollution by sediment: Sources and the detachment and transport processes. In Agricultural Practices and Water Quality, Conference Proceedings, 3-20. Ames, IA: Iowa State University.
  31. ↵
    1. Jones, C.S., and
    2. K.E. Schilling
    . 2011. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916–2009. Journal of Environmental Quality 40(6):1911-1923.
    OpenUrlCrossRefGeoRefPubMed
    1. Jones, C.S., and
    2. K.E. Schilling
    . 2013. Carbon export from the Raccoon River, Iowa: Patterns, processes, and opportunities. Journal of Environmental Quality 42(1):155-163.
    OpenUrlCrossRefPubMed
  32. ↵
    1. Kimoto, A.,
    2. M. Nearing,
    3. M. Shipitalo, and
    4. V. Polyakov
    . 2006. Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 31(14):1763-1774.
    OpenUrl
  33. ↵
    1. Lovell, S.T., and
    2. W.C. Sullivan
    . 2006. Environmental benefits of conservation buffers in the United States: Evidence, promise, and open questions. Agriculture, Ecosystems and Environment 112(4):249-260.
    OpenUrlCrossRefWeb of Science
  34. ↵
    1. Lowrance, R.,
    2. S. Dabney, and
    3. R. Schultz
    . 2002. Improving water and soil quality with conservation buffers. Journal of Soil and Water Conservation 57(2):36A-43A.
    OpenUrlFREE Full Text
  35. ↵
    1. Lu, H.,
    2. C.J. Moran, and
    3. I.P. Prosser
    . 2006. Modelling sediment delivery ratio over the Murray Darling Basin. Environmental Modelling & Software 21(9):1297-1308.
    OpenUrl
  36. ↵
    1. Mallarino, A.,
    2. B. Stewart,
    3. J. Baker,
    4. J. Downing, and
    5. J. Sawyer
    . 2002. Phosphorus indexing for cropland: Overview and basic concepts of the Iowa phosphorus index. Journal of Soil and Water Conservation 57(6):440-447.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. State of Minnesota
    . 2014. Minnesota Nutrient Reduction Strategy. https://www.pca.state.mn.us/sites/default/files/wq-s1-80.pdf.
  38. ↵
    1. Myers, N.,
    2. U.R. Nath,
    3. M. Westlake, and
    4. J. Pearson
    . 1984. Gaia: An atlas of planet management. Berkeley, CA: University of California Press.
  39. ↵
    1. Nakato, T.
    1981. Sediment-Budget Study for the Upper Mississippi River, GREAT-III Reach. Iowa City, IA: Iowa Institute of Hydraulic Research.
  40. ↵
    1. Newcombe, C.P., and
    2. J.O. Jensen
    . 1996. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management 16(4):693-727.
    OpenUrlCrossRef
  41. ↵
    1. Newcombe, C.P., and
    2. D.D. MacDonald
    . 1991. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management 11(1):72-82.
    OpenUrlCrossRef
  42. ↵
    1. Odgaard, A.J.
    1984. Bank Erosion Contribution to Stream Sediment Load. Iowa City, IA: Iowa Institute of Hydraulic Research, University of Iowa.
  43. ↵
    1. Ohio Environmental Protection Agency
    . 2013. Ohio Nutrient Reduction Strategy. Columbus, OH: Ohio Environmental Protection Agency, Division of Surface Water.
  44. ↵
    1. Parsons, J.E.,
    2. D. Thomas, and
    3. R. Huffman
    . 2004. Agricultural Non-Point Source Water Quality Models: Their Use and Application. Southern Cooperative Series Bulletin 398.
  45. ↵
    1. Pimentel, D.,
    2. C. Harvey,
    3. P. Resosudarmo,
    4. K. Sinclair,
    5. D. Kurz,
    6. M. McNair,
    7. S. Crist,
    8. L. Shpritz,
    9. L. Fitton, and
    10. R. Saffouri
    . 1995. Environmental and economic costs of soil erosion and conservation benefits. Science-AAAS-Weekly Paper Edition 267(5201):1117-1122.
    OpenUrl
  46. ↵
    1. Poesen, J.,
    2. K. Vandaele, and
    3. B. Van Wesemael
    . 1996. Contribution of gully erosion to sediment production on cultivated lands and rangelands. In Proceedings of the Exeter Symposium, July 1996. International Association of Hydrological Science Publications 236:251-266.
    OpenUrl
  47. ↵
    1. Prosser, I.P.,
    2. A.O. Hughes, and
    3. I.D. Rutherfurd
    . 2000. Bank erosion of an incised upland channel by subaerial processes: Tasmania, Australia. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group 25(10):1085-1101.
    OpenUrl
  48. ↵
    1. Renard, K.G.,
    2. G.R. Foster,
    3. G. Weesies,
    4. D. McCool, and
    5. D. Yoder
    . 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), 703. Washington, DC: USDA.
  49. ↵
    1. Ritchie, J.C.,
    2. G.W. McCarty,
    3. E.R. Venteris, and
    4. T. Kaspar
    . 2007. Soil and soil organic carbon redistribution on the landscape. Geomorphology 89(1):163-171.
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Rundhaug, T.J.,
    2. G.R. Geimer,
    3. C.W. Drake,
    4. A.A. Amado,
    5. A.A. Bradley,
    6. C.F. Wolter, and
    7. L.J. Weber
    . 2018. Agricultural conservation practices in Iowa watersheds: Comparing actual implementation with practice potential. Environmental Monitoring and Assessment 190(11):659.
    OpenUrl
  51. ↵
    1. Runkel, R.L.,
    2. C.G. Crawford, and
    3. T.A. Cohn
    . 2004. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. Techniques and Methods Book 4, 2328-7055. Reston, VA: US Geological Survey. https://pubs.er.usgs.gov/publication/tm4A5.
  52. ↵
    1. Schertz, D.
    1983. The basis for soil loss tolerances. Journal of Soil and Water Conservation 38(1):10-14.
    OpenUrlFREE Full Text
  53. ↵
    1. Schilling, K.E.
    2000. Patterns of Discharge and Suspended Sediment Transport in the Walnut and Squaw Creek Watersheds, Jasper County, Iowa: Water Years 1996-1998. Des Moines, IA: Iowa Department of Natural Resources.
  54. ↵
    1. Schilling, K.E.,
    2. T.M. Isenhart,
    3. J.A. Palmer,
    4. C.F. Wolter, and
    5. J. Spooner
    . 2011. Impacts of land-cover change on suspended sediment transport in two agricultural watersheds 1. JAWRA: Journal of the American Water Resources Association 47(4):672-686.
    OpenUrl
  55. ↵
    1. Schilling, K.E.,
    2. S.-W. Kim, and
    3. C.S. Jones
    . 2017. Use of water quality surrogates to estimate total phosphorus concentrations in Iowa rivers. Journal of Hydrology: Regional Studies 12:111-121.
    OpenUrl
  56. ↵
    1. Shi, Z.,
    2. C. Cai,
    3. S. Ding,
    4. T. Wang, and
    5. T. Chow
    . 2004. Soil conservation planning at the small watershed level using RUSLE with GIS: A case study in the Three Gorge Area of China. Catena 55(1):33-48.
    OpenUrlCrossRefGeoRef
  57. ↵
    1. Shields, Jr, F.D.,
    2. S. Knight, and
    3. C. Cooper
    . 1995. Rehabilitation of watersheds with incising channels 1. JAWRA: Journal of the American Water Resources Association 31(6):971-982.
    OpenUrl
  58. ↵
    1. Siddiqui, K.
    , 1998. ‘Agricultural Exports, Poverty and Ecological Crisis’: Case Study of Central American Countries. Economic and Political Weekly A128-A136.
  59. ↵
    1. Stenback, G.A.,
    2. W.G. Crumpton,
    3. K.E. Schilling, and
    4. M.J. Helmers
    . 2011. Rating curve estimation of nutrient loads in Iowa rivers. Journal of Hydrology 396(1-2):158-169.
    OpenUrlGeoRef
  60. ↵
    1. Streeter, M.T., and
    2. K.E. Schilling
    . 2019. Assessing and mitigating the effects of agricultural soil erosion on roadside ditches. Journal of Soils and Sediments 20:524-534.
    OpenUrl
  61. ↵
    1. Streeter, M.T.,
    2. K.E. Schilling, and
    3. C.F. Wolter
    . 2018. Sediment delivery and nutrient export as indicators of soil sustainability in an Iowa agricultural watershed. Journal of Soils and Sediments 18:1756-1766.
    OpenUrl
  62. ↵
    1. Turner, R.E.,
    2. N.N. Rabalais,
    3. R.B. Alexander,
    4. G. McIsaac, and
    5. R. Howarth
    . 2007. Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico. Estuaries and Coasts 30(5):773-790.
    OpenUrl
  63. ↵
    1. University of Iowa
    . 2019. Iowa Water Quality Information System. https://iwqis.iowawis.org/.
  64. ↵
    1. US Army Corps of Engineers
    . 2019. Hydrologic Engineering Center’s – River Analysis System. https://www.hec.usace.army.mil/software/hec-ras/.
  65. ↵
    1. USDA
    . 2019a. ACPF Watershed Database Land Use Viewing and Data Downloading. https://www.nrrig.mwa.ars.usda.gov/st40_huc/dwnldACPF.html.
  66. ↵
    1. USDA
    . 2019b. Agricultural Conservation Planning Framework. https://data.nal.usda.gov/dataset/agricultural-conservation-planning-framework-acpf-toolbox.
  67. ↵
    1. US Environmental Protection Agency
    . 2018. National Pollutant Discharge Elimination System. https://www.epa.gov/npdes.
    1. US Geological Survey
    . 2019. National Water Information System. https://waterdata.usgs.gov/nwis.
  68. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 1998. Erosion and Sediment Delivery - NRCS Field Office Technical Guide. Washington, DC: USDA Natural Resources Conservation Service.
  69. ↵
    1. USDA NRCS
    . 2002. USLE Erosion Prediction. https://efotg.sc.egov.usda.gov/references/public/IA/Universal_Soil_Loss_Equation1.pdf.
  70. ↵
    1. Vadas, P.,
    2. L. Good,
    3. P. Moore, and
    4. N. Widman
    . 2009. Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool. Journal of Environmental Quality 38(4):1645-1653.
    OpenUrlCrossRefPubMed
  71. ↵
    1. Waters, T.F.
    1995. Sediment in streams: Sources, biological effects, and control. Bethesda, MD: American Fisheries Society.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (2)
Journal of Soil and Water Conservation
Vol. 76, Issue 2
March/April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Erosion and sediment delivery in southern Iowa watersheds: Implications for conservation planning
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 6 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Erosion and sediment delivery in southern Iowa watersheds: Implications for conservation planning
M.T. Streeter, K.E. Schilling, C.L. Burras, C.F. Wolter
Journal of Soil and Water Conservation Mar 2021, 76 (2) 103-115; DOI: 10.2489/jswc.2021.00125

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Erosion and sediment delivery in southern Iowa watersheds: Implications for conservation planning
M.T. Streeter, K.E. Schilling, C.L. Burras, C.F. Wolter
Journal of Soil and Water Conservation Mar 2021, 76 (2) 103-115; DOI: 10.2489/jswc.2021.00125
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Impact of no-tillage on water purification and retention functions of soil
  • Risk, cost-share payments, and adoption of cover crops and no-till
Show more Research Section

Similar Articles

Keywords

  • best management practices
  • sediment delivery ratios
  • soil conservation
  • soil erosion

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2021 Soil and Water Conservation Society