Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Impact of no-tillage on water purification and retention functions of soil

K. Skaalsveen and L. Clarke
Journal of Soil and Water Conservation March 2021, 76 (2) 116-129; DOI: https://doi.org/10.2489/jswc.2021.00012
K. Skaalsveen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Clarke
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

There are still uncertainties regarding the long-term impact of no-tillage farming practices on separate soil functions in the United Kingdom. This paper aimed to evaluate the chemical and physical processes in two different agricultural soils under no-tillage and conventional management practices to determine their impact on water related soil functions at field scale in the United Kingdom. The field-scale monitoring compares two neighboring farms with similar soil and topographic characteristics—one of the farms implemented no-tillage practices in 2013, while the second farm is under conventional soil management with moldboard plowing. Two soil types were evaluated under each farming practice: (1) a free-draining porous limestone, and (2) a lime-rich loamy soil with high silt and clay content. Field monitoring was undertaken over a two-year period and included nutrient analysis of surface and subsurface soil samples, bulk density, soil moisture, infiltration capacity, surface runoff, and analysis of phosphorus (P) and suspended solids in watercourses in close proximity to the test fields. The conversion to no-tillage changed the soil structure, leading to a higher bulk density and soil organic matter content and thereby increasing the soil moisture levels. These changes impacted the denitrification rates, reducing the soil nitrate (NO3) levels. The increased plant material cover under no-tillage increased the levels of soil phosphate (PO43–) and PO43– leaching. The extent to which soil functions were altered by farming practice was influenced by the soil type, with the free-draining porous limestone providing greater benefits under no-tillage in this study. The importance of including soils of different characteristics, texture, and mineralogy in the assessment and monitoring of farming practice is emphasized, and additionally the between field and in-field spatial variability (both across the field and with depth) highlighted the importance of a robust sampling strategy that encompasses a large enough sample to effectively reveal the impact of the farming practice.

Key words
  • monitoring scale
  • no-tillage
  • soil functions
  • soil structure
  • water purification
  • water retention
  • © 2021 by the Soil and Water Conservation Society
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (2)
Journal of Soil and Water Conservation
Vol. 76, Issue 2
March/April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Impact of no-tillage on water purification and retention functions of soil
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
1 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Impact of no-tillage on water purification and retention functions of soil
K. Skaalsveen, L. Clarke
Journal of Soil and Water Conservation Mar 2021, 76 (2) 116-129; DOI: 10.2489/jswc.2021.00012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Impact of no-tillage on water purification and retention functions of soil
K. Skaalsveen, L. Clarke
Journal of Soil and Water Conservation Mar 2021, 76 (2) 116-129; DOI: 10.2489/jswc.2021.00012
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Microbial respiration gives early indication of soil health improvement following cover crops
  • Aerial interseeding and planting green to enhance nitrogen capture and cover crop biomass carbon
  • Rice producer enrollment and retention in a USDA regional conservation partnership program in the southern United States
Show more Research Section

Similar Articles

Keywords

  • monitoring scale
  • no-tillage
  • soil functions
  • soil structure
  • water purification
  • water retention

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society