Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

A new approach for calculating the slope length factor in the Revised Universal Soil Loss Equation

Q. Wu, Y. Chen, J.P. Wilson, H. Tan and T. Chu
Journal of Soil and Water Conservation March 2021, 76 (2) 153-165; DOI: https://doi.org/10.2489/jswc.2021.00085
Q. Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Chen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.P. Wilson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. Tan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Chu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Ali, M.,
    2. G. Sterk,
    3. M. Seeger,
    4. M. Boersema, and
    5. P. Peters
    . 2012. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds. Hydrology and Earth System Sciences 16:591-601. https://doi.org/10.5194/hess-16-591-2012.
    OpenUrlCrossRef
  2. ↵
    1. Bagarello, V.,
    2. V. Ferro, and
    3. V. Pampalone
    . 2013. A new expression of the slope length factor to apply USLE-MM at Sparacia experimental area (Southern Italy). Catena 102:21-26. https://doi.org/10.1016/j.catena.2011.06.008.
    OpenUrlGeoRef
  3. ↵
    1. Benavidez, R.,
    2. B. Jackson,
    3. D. Maxwell, and
    4. K. Norton
    . 2018. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrology and Earth System Sciences 22:6059-6086. https://doi.org/10.5194/hess-22-6059-2018.
    OpenUrl
  4. ↵
    1. Ben-Salem, N.,
    2. S. Álvarez, and
    3. M. López-Vicente
    . 2018. Soil and water conservation in rainfed vineyards with common sainfoin and spontaneous vegetation under different ground conditions. Water 10(8):1058. https://doi.org/10.3390/w10081058.
    OpenUrl
  5. ↵
    1. J. Böhner,
    2. K.R. McCloy, and
    3. J. Strobl
    1. Böhner, J., and
    2. T. Selige
    . 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In SAGA-Analyses and Modelling Applications, eds. J. Böhner, K.R. McCloy, and J. Strobl. Göttinger Geographische Abhandlungen 115:13-28.
    OpenUrl
  6. ↵
    1. Burrough, P.A., and
    2. R.A. McDonnell
    . 1998. Principles of Geographical Information System. Oxford, UK: Oxford University Press.
  7. ↵
    1. Cao, X.,
    2. Q. Yang,
    3. M. Lan, and
    4. C. Wang
    . 2018. BDU partition for extracting distributed soil erosion slope length in large-and medium-scale watersheds. Science of Soil and Water Conservation 16(3):34-40.
    OpenUrl
  8. ↵
    1. Chang, K.
    2007. Introduction to Geographic Information Systems, 4th edition. New York: McGraw-Hill.
  9. ↵
    1. Chen, Z.T., and
    2. J. Guevara
    . 1987. System selection of very important points (VIP) from digital terrain models for constructing triangular irregular networks. In Proceedings of the 8th International Symposium on Computer-Assisted Cartography (AutoCarto 8), Baltimore, Maryland, 29 March through 3 April 1987.
  10. ↵
    1. Chen, Y.,
    2. J.P. Wilson,
    3. Q. Zhu, and
    4. Q. Zhou
    . 2012. Comparison of drainage-constrained methods for DEM generalization. Computers & Geosciences 48:41-49. https://doi.org/10.1016/j.cageo.2012.05.002.
    OpenUrl
  11. ↵
    1. Chen, Y., and
    2. Q. Zhou
    . 2013. A scale-adaptive DEM for multi-scale terrain analysis. International Journal of Geographical Information Science 27(7):1329-1348. https://doi.org/10.1080/13658816.2012.739690.
    OpenUrl
  12. ↵
    1. Chen, Y.,
    2. Q. Zhou,
    3. S. Li,
    4. F. Meng,
    5. X. Bi,
    6. J.P. Wilson,
    7. Z. Xing,
    8. J. Qi,
    9. Q. Li, and
    10. C. Zhang
    . 2014. The simulation of surface flow dynamics using a flow-path network model. International Journal of Geographical Information Science 28(11):2242-2260. https://doi.org/10.1080/13658816.2014.917312.
    OpenUrl
  13. ↵
    1. Conrad, O.,
    2. B. Bechtel,
    3. M. Bock,
    4. H. Dietrich,
    5. E. Fischer,
    6. L. Gerlitz,
    7. J. Wehberg,
    8. V. Wichmann, and
    9. J. Böhner
    . 2015. System for Automated Geoscientific Analyses (SAGA) v.2.1.4. Geoscientific Model Development 8:1991-2007. https://doi.org/10.5194/gmd-8-1991-2015.
    OpenUrlCrossRef
    1. Costa-Cabral, M.C., and
    2. S.J. Burges
    . 1994. Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30(6):1681-1692. https://doi.org/10.1029/93wr03512.
    OpenUrlCrossRefWeb of Science
  14. ↵
    1. Dangle, C.L.,
    2. W.M. Aust,
    3. M.C. Bolding,
    4. S.M. Barrett, and
    5. E.B. Schilling
    . 2019. The effectiveness of forestry best management practices at skidder stream crossings in Virginia. Journal of Soil and Water Conservation 74(3):199-208. https://doi.org/10.2489/jswc.74.3.199.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Desmet, P.J.J., and
    2. G. Govers
    . 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51(5):427-433.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Duan, X.,
    2. L. Rong,
    3. Z. Bai,
    4. Z. Gu,
    5. J. Ding,
    6. Y. Tao,
    7. J. Li,
    8. J. Li,
    9. W. Wang, and
    10. X. Yin
    . 2020. Effects of soil conservation measures on soil erosion in the Yunnan Plateau, southwest China. Journal of Soil and Water Conservation 75(2):131-142. https://doi.org/10.2489/jswc.75.2.131.
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Dunn, M., and
    2. R. Hickey
    . 1998. The effect of slope algorithms on slope estimates within a GIS. Cartography 27(1):9-15. https://doi.org/10.1080/00690805.1998.9714086.
    OpenUrlGeoRef
  18. ↵
    1. Evans, I.S.
    1980. An integrated system of terrain analysis and slope mapping. Zeitschrift für Geomorphologie (Supplement Band) 36:274-295.
    OpenUrl
  19. ↵
    1. Florinsky, I.V.
    1998. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science 12(1):47-62. https://doi.org/10.1080/136588198242003.
    OpenUrlGeoRef
    1. Freeman, T.G.
    1991. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences 17(3):413-422. https://doi.org/10.1016/0098-3004(91)90048-I.
    OpenUrlCrossRef
  20. ↵
    1. Galdino, S.,
    2. E.E. Sano,
    3. R.G. Andrade,
    4. C.R. Grego,
    5. S.F. Nogueira,
    6. C. Bragantini, and
    7. A.H.G. Flosi
    . 2016. Large-scale modeling of soil erosion with RUSLE for conservationist planning of degraded cultivated Brazilian pastures. Land Degradation & Development 27(3):773-784. https://doi.org/10.1002/ldr.2414.
    OpenUrl
  21. ↵
    1. Gogorcena, Y.,
    2. M. Sánchez-Monfort, and
    3. M. López-Vicente
    . 2019. Grapevine yield and wine quality in ancient Spanish Pyrenean vineyards: Influence of climatic and physiographic parameters. Vitis-Journal of Grapevine Research 58:103-110. https://doi.org/10.5073/vitis.2019.58.special-issue.103-110.
    OpenUrl
  22. ↵
    1. Hickey, R.
    2000. Slope angle and slope length solutions for GIS. Cartography 29(1):1-8. https://doi.org/10.1080/00690805.2000.9714334.
    OpenUrlGeoRef
  23. ↵
    1. Hickey, R.,
    2. A. Smith, and
    3. P. Jankowski
    . 1994. Slope length calculations from a DEM within ARC/INFO grid. Computers, Environment and Urban Systems 18(5):365-380. https://doi.org/10.1016/0198-9715(94)90017-5.
    OpenUrlCrossRef
  24. ↵
    1. Hjerdt, K.N.,
    2. J.J. McDonnell,
    3. J. Seibert, and
    4. A. Rodhe
    . 2004. A new topographic index to quantify downslope controls on local drainage. Water Resources Research 40(5):W05602. https://doi.org/10.1029/2004wr003130.
    OpenUrlCrossRef
  25. ↵
    1. Hofierka, J.
    1992. Interpolation, morphometric analysis of relief and modeling water erosion. Master’s thesis, Comenius University, Bratislava, Slovakia.
  26. ↵
    1. Horn, B.K.P.
    1981. Hill shading and the reflectance map. Proceedings of the IEEE 69(1):14-47. https://doi.org/10.1109/PROC.1981.11918.
    OpenUrlCrossRefWeb of Science
  27. ↵
    1. Kinnell, P.I.A.
    2007. Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the Universal Soil Loss Equation. Hydrological Processes 21(20):2681-2689. https://doi.org/10.1002/hyp.6493.
    OpenUrlGeoRef
  28. ↵
    1. Lal, R.
    1998. Soil erosion impact on agronomic productivity and environment quality. Critical Reviews in Plant Sciences 17(4):319-464. https://doi.org/10.1080/07352689891304249.
    OpenUrlCrossRefWeb of Science
  29. ↵
    1. Lazaro, R.,
    2. A. Calvo-Cases,
    3. A. Lázaro, and
    4. I. Molina
    . 2015. Effective run-off flow length over biological soil crusts on silty loam soils in drylands. Hydrological Processes 29(11):2534-2544. https://doi.org/10.1002/hyp.10345.
    OpenUrlGeoRef
  30. ↵
    1. Liu, X.,
    2. B. Jin,
    3. J. Hu, and
    4. J. Ma
    . 2012. Quantitative analysis of error in extracting flow length from Grid-based Digital Elevation Model. Geomatics and Information Science of Wuhan University 37(7):757-761.
    OpenUrl
  31. ↵
    1. Liu, H.,
    2. J. Kiesel,
    3. G. Hörmann, and
    4. N. Fohrer
    . 2011. Effects of DEM horizontal resolution and methods on calculating the slope length factor in gently rolling landscapes. Catena 87(3):368-375. https://doi.org/10.1016/j.catena.2011.07.003.
    OpenUrlGeoRef
  32. ↵
    1. López-Vicente, M.,
    2. N. Lana-Renault,
    3. J.M. García-Ruiz, and
    4. A. Navas
    . 2011. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments 11:1440-1455. https://doi.org/10.1007/s11368-011-0428-2.
    OpenUrlGeoRef
  33. ↵
    1. López-Vicente, M.,
    2. C. Pérez-Bielsa,
    3. T. López-Montero,
    4. L.J. Lambán, and
    5. A. Navas
    . 2014. Runoff simulation with eight different flow accumulation algorithms: Recommendations using a spatially distributed and open-source model. Environmental Modelling & Software 62:11-21. https://doi.org/10.1016/j.envsoft.2014.08.025.
    OpenUrl
  34. ↵
    1. Mitasova, H.,
    2. J. Hofierka,
    3. M. Zlocha, and
    4. L.R. Iverson
    . 1996. Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographical Information Systems 10:629-641. https://doi.org/10.1080/02693799608902101.
    OpenUrlGeoRefWeb of Science
  35. ↵
    1. Moore, I.D., and
    2. G.J. Burch
    . 1986a. Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal 50(5):1294-1298. https://doi.org/10.2136/sssaj1986.03615995005000050042x.
    OpenUrlCrossRefGeoRefWeb of Science
  36. ↵
    1. Moore, I.D., and
    2. G.J. Burch
    . 1986b. Modelling erosion and deposition: Topographic effects. Transactions of the ASAE 29(6):1624-1630. https://doi.org/10.13031/2013.30363.
    OpenUrlWeb of Science
  37. ↵
    1. Moore, I.D., and
    2. J. Nieber
    . 1989. Landscape assessment of soil erosion and nonpoint source pollution. Journal of the Minnesota Academy of Science 55(1):18-25.
    OpenUrlGeoRef
  38. ↵
    1. Moore, I.D., and
    2. J.P. Wilson
    . 1992. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation 47(5):423-428.
    OpenUrlAbstract/FREE Full Text
  39. ↵
    1. O’Callaghan, J.F., and
    2. D.M. Mark
    . 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing 28(3):323-344. https://doi.org/10.1016/S0734-189X(84)80011-0.
    OpenUrlCrossRef
  40. ↵
    1. Panagos, P.,
    2. P. Borrelli, and
    3. K. Meusburger
    . 2015. A new european slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 5(2):117-126. https://doi.org/10.3390/geosciences5020117.
    OpenUrl
  41. ↵
    1. Panagos, P.,
    2. G. Standardi,
    3. P. Borrelli,
    4. E. Lugato,
    5. L. Montanarella, and
    6. F. Bosello
    . 2018. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development 29(3):471-484. https://doi.org/10.1002/ldr.2879.
    OpenUrl
  42. ↵
    1. Poesen, J.
    2017. Soil erosion in the Anthropocene: Research needs: Soil erosion in the Anthropocene. Earth Surface Processes and Landforms 43(1):64-84. https://doi.org/10.1002/esp.4250.
    OpenUrl
  43. ↵
    1. Qin, W.,
    2. Q. Guo,
    3. W. Cao,
    4. Z. Yin,
    5. Q. Yan,
    6. Z. Shan, and
    7. F. Zheng
    . 2018. A new RUSLE slope length factor and its application to soil erosion assessment in a Loess Plateau watershed. Soil and Tillage Research 182:10-24. https://doi.org/10.1016/j.still.2018.04.004.
    OpenUrl
  44. ↵
    1. Quinn, P.,
    2. K. Beven,
    3. P. Chevallier, and
    4. O. Planchon
    . 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes 5(1):59-79. https://doi.org/10.1002/hyp.3360050106.
    OpenUrlGeoRefWeb of Science
  45. ↵
    1. Renard, K.G.,
    2. G.R. Foster,
    3. G.A. Weesies,
    4. D.K. McCool, and
    5. D.C. Yoder
    . 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss equation (RUSLE). Agricultural Handbook, No. 703. USDA. Washington, DC: USDA.
  46. ↵
    1. Renard, K.G.,
    2. G.R. Foster,
    3. G.A. Weesies, and
    4. J.P. Porter
    . 1991. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation 46(1):30-33.
    OpenUrlFREE Full Text
  47. ↵
    1. Schmidt, S.,
    2. S. Tresch, and
    3. K. Meusburger
    . 2019. Modification of the RUSLE slope length and steepness factor (LS-factor) based on rainfall experiments at steep alpine grasslands. MethodsX 6:219-229. https://doi.org/10.1016/j.mex.2019.01.004.
    OpenUrl
    1. Seibert, J., and
    2. B.L. McGlynn
    . 2007. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43(4):W04501. https://doi.org/10.1029/2006wr005128.
    OpenUrlCrossRef
  48. ↵
    1. Skidmore, A.
    1989. A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model. International Journal of Geographical Information Science 3(4):323-334. https://doi.org/10.1080/02693798908941519.
    OpenUrlCrossRef
  49. ↵
    1. State Bureau of Surveying and Mapping
    . 2001. 1:10000 and 1:50000 digital elevation model. The Basic Digital Geographical Information Product, Standard CH/T 1008-2001. In The State Bureau of Surveying and Mapping of China (in Chinese).
  50. ↵
    1. Swarnkar, S.,
    2. A. Malini,
    3. S. Tripathi, and
    4. R. Sinha
    . 2018. Assessment of uncertainties in soil erosion and sediment yield estimates at ungauged basins: An application to the Garra River basin, India. Hydrology and Earth System Sciences 22:2471-2485. https://doi.org/10.5194/hess-22-2471-2018.
    OpenUrl
    1. Tarboton, D.G.
    1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research 33(2):309-319. https://doi.org/10.1029/96wr03137.
    OpenUrlCrossRefWeb of Science
  51. ↵
    1. Todisco, F.,
    2. L. Brocca,
    3. L.F. Termite, and
    4. W. Wagner
    . 2015. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale. Hydrology and Earth System Sciences 19:3845-3856. https://doi.org/10.5194/hess-19-3845-2015.
    OpenUrl
  52. ↵
    1. Van Remortel, R.D.,
    2. M.E. Hamilton, and
    3. R.J. Hickey
    . 2001. Estimating the LS factor for RUSLE through iterative slope length processing of digital elevation data within Arclnfo grid. Cartography 30(1):27-35. https://doi.org/10.1080/00690805.2001.9714133.
    OpenUrlCrossRefGeoRef
  53. ↵
    1. Van Remortel, R.D.,
    2. R.W. Maichle, and
    3. R.J. Hickey
    . 2004. Computing the LS factor for the Revised Universal Soil Loss Equation through array-based slope processing of digital elevation data using a C++ executable. Computers & Geosciences 30(9-10):1043-1053. https://doi.org/10.1016/j.cageo.2004.08.001.
    OpenUrl
  54. ↵
    1. Wang, C.,
    2. Z. Chen,
    3. Q. Yang,
    4. J. Cao, and
    5. S. Chou
    . 2012. Analysis on uncertainty of DEM derived watershed distributed slope length. Research of Soil and Water Conservation 19(2):15-18.
    OpenUrl
  55. ↵
    1. Wilson, J.P.
    1986. Estimating the topographic factor in the Universal Soil Loss Equation for watersheds. Journal of Soil and Water Conservation 41(3):179-184.
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Wilson, J.P.
    1989. Soil erosion from agricultural land in the Lake Simcoe-Couchiching Basin, 1800-1981. Canadian Journal of Soil Science 69(1):137-151. https://doi.org/10.4141/cjss89-013.
    OpenUrlGeoRefWeb of Science
  57. ↵
    1. Wilson, J.P.
    2018. Environmental Applications of Digital Terrain Modelling. Oxford, UK: John Wiley and Sons.
  58. ↵
    1. Winchell, M.F.,
    2. S.H. Jackson,
    3. A.M. Wadley, and
    4. R. Srinivasan
    . 2008. Extension and validation of a geographic information system-based method for calculating the Revised Universal Soil Loss Equation length-slope factor for erosion risk assessments in large watersheds. Journal of Soil and Water Conservation 63(3):105-111. https://doi.org/10.2489/jswc.63.3.105.
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Wischmeier, W.H., and
    2. D.D. Smith
    . 1978. Predicting rainfall erosion losses: A guide to conservation planning. USDA Agricultural Handbook, No. 537. Washington, DC: USDA.
  60. ↵
    1. Wu, Q.,
    2. Y. Chen,
    3. J.P. Wilson,
    4. X. Liu, and
    5. H. Li
    . 2019. An effective parallelization algorithm for DEM generalization based on CUDA. Environmental Modelling & Software 114:64-74. https://doi.org/10.1016/j.envsoft.2019.01.002.
    OpenUrl
  61. ↵
    1. Xing, W.,
    2. P. Yang,
    3. S. Ren,
    4. C. Ao,
    5. X. Li, and
    6. W. Gao
    . 2016. Slope length effects on processes of total nitrogen loss under simulated rainfall. Catena 139:73-81. https://doi.org/10.1016/j.catena.2015.12.008.
    OpenUrl
  62. ↵
    1. Yang, X.
    2015. Digital mapping of RUSLE slope length and steepness factor across New South Wales, Australia. Soil Research 53(2):216-225. https://doi.org/10.1071/sr14208.
    OpenUrl
  63. ↵
    1. Yin, S.,
    2. Z. Zhu,
    3. L. Wang,
    4. B. Liu,
    5. Y. Xie,
    6. G. Wang, and
    7. Y. Li
    . 2018. Regional soil erosion assessment based on a sample survey and geostatistics. Hydrology and Earth System Sciences 22:1695-1712. https://doi.org/10.5194/hess-22-1695-2018.
    OpenUrl
  64. ↵
    1. Zevenbergen, L.W., and
    2. C.R. Thorne
    . 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12(1):47-56. https://doi.org/10.1002/esp.3290120107.
    OpenUrlCrossRefGeoRefWeb of Science
  65. ↵
    1. Zhang, X.,
    2. M. Hu,
    3. X. Guo,
    4. H. Yang,
    5. Z. Zhang, and
    6. K. Zhang
    . 2018. Effects of topographic factors on runoff and soil loss in Southwest China. Catena 160:394-402. https://doi.org/10.1016/j.catena.2017.10.013.
    OpenUrl
    1. Zhang, H.,
    2. J. Wei,
    3. Q. Yang,
    4. J.E.M. Baartman,
    5. L. Gai,
    6. X. Yang,
    7. S. Li,
    8. J. Yu,
    9. C.J. Ritsema, and
    10. V. Geissen
    . 2017. An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma 308:36-45. https://doi.org/10.1016/j.geoderma.2017.08.006.
    OpenUrl
  66. ↵
    1. Zhang, H.,
    2. Q. Yang,
    3. R. Li,
    4. Q. Liu,
    5. D. Moore,
    6. P. He,
    7. C.J. Ritsema, and
    8. V. Geissen
    . 2013. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences 52:177-188. https://doi.org/10.1016/j.cageo.2012.09.027.
    OpenUrl
  67. ↵
    1. Zhou, Q., and
    2. Y. Chen
    . 2011. Generalization of DEM for terrain analysis using a compound method. ISPRS Journal of Photogrammetry and Remote Sensing 66(1):38-45. https://doi.org/10.1016/j.isprsjprs.2010.08.005.
    OpenUrlGeoRef
  68. ↵
    1. Zhou, Q., and
    2. X. Liu
    . 2002. Error assessment of grid-based flow routing algorithms used in hydrological models. International Journal of Geographical Information Science 16(8):819-842. https://doi.org/10.1080/13658810210149425.
    OpenUrl
  69. ↵
    1. Zhou, Q.,
    2. P. Pilesjö, and
    3. Y. Chen
    . 2011. Estimating surface flow paths on a digital elevation model using a triangular facet network. Water Resources Research 47(7):W07522. https://doi.org/10.1029/2010wr009961.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (2)
Journal of Soil and Water Conservation
Vol. 76, Issue 2
March/April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A new approach for calculating the slope length factor in the Revised Universal Soil Loss Equation
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
A new approach for calculating the slope length factor in the Revised Universal Soil Loss Equation
Q. Wu, Y. Chen, J.P. Wilson, H. Tan, T. Chu
Journal of Soil and Water Conservation Mar 2021, 76 (2) 153-165; DOI: 10.2489/jswc.2021.00085

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
A new approach for calculating the slope length factor in the Revised Universal Soil Loss Equation
Q. Wu, Y. Chen, J.P. Wilson, H. Tan, T. Chu
Journal of Soil and Water Conservation Mar 2021, 76 (2) 153-165; DOI: 10.2489/jswc.2021.00085
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Data Availability Statement
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • digital elevation models
  • flow path network
  • flow-path-network-triangular-facet-network (FPN_TFN)
  • slope
  • slope length
  • triangular facet network

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society