Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Manure injection alters the spatial distribution of soil nitrate, mineralizable carbon, and microbial biomass

A.M. Bierer, R.O. Maguire, M.S. Strickland, R.D. Stewart and W.E. Thomason
Journal of Soil and Water Conservation March 2021, 76 (2) 175-189; DOI: https://doi.org/10.2489/jswc.2021.00002
A.M. Bierer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.O. Maguire
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.S. Strickland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.D. Stewart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W.E. Thomason
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Z. He, and
    2. H. Zhang
    1. Acosta-Martinez, V., and
    2. H.M. Waldrip
    . 2014. Soil enzyme activities as affected by manure types, rates, and tillage application practices. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment, eds. Z. He, and H. Zhang, p. 99–122. New York, NY: Springer Publishing. https://doi.org/10.1007/978-94-017-8807-6_6.
  2. ↵
    1. Agnew, J.,
    2. C. Lague,
    3. J. Schoenau, and
    4. R. Farrell
    . 2010. Greenhouse gas emissions measured 24 hours after surface and subsurface application of different manure types. American Society of Agricultural and Biological Engineers 53:1689–1701.
    OpenUrl
  3. ↵
    1. Hauck, R.D.
    1. Aldrich, S.R.
    1984. Nitrogen management to minimize adverse effects on the environment. 1984. In Nitrogen in Crop Production, ed. Hauck, R.D., Chapter 45. Madison, WI: American Society of Agronomy. https://doi.org/10.2134/1990.nitrogenincropproduction.c45.
  4. ↵
    1. Alvarez, R.,
    2. R.A. Diaz,
    3. N. Barbero,
    4. O.J. Santanatoglia, and
    5. L. Blotta
    . 1995. Soil organic carbon, microbial biomass and CO2-C production from three tillage systems. Soil Tillage Research 33(1):17-28. https://doi.org/10.1016/0167-1987(94)00432-E.
    OpenUrl
  5. ↵
    1. Amin, M.G.M.,
    2. J. Šimůnek, and
    3. M. Lægdsmand
    . 2014. Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management 131:17–29. https://doi.org/10.1016/j.agwat.2013.09.002.
    OpenUrl
  6. ↵
    1. Assefa, B., and
    2. Y. Chen
    . 2007. A protocol for soil nutrient sampling after liquid manure injection. Canadian Biosystems Engineering 49:2.7-2.13.
    OpenUrl
  7. ↵
    1. Assefa, B., and
    2. Y. Chen
    . 2008. Simulation of the lateral movement of NO3-N in soils following liquid manure injection. Canadian Biosystems Engineering 50:17–26.
    OpenUrl
  8. ↵
    1. Ball-Coelho, B.R.,
    2. R.C. Roy, and
    3. A.J. Bruin
    . 2006. Nitrogen recovery and partitioning with different rates and methods of sidedressed manure. Soil Science Society of America Journal 70:464–473. https://doi.org/10.2136/sssaj2005.0122.
    OpenUrlCrossRefWeb of Science
  9. ↵
    1. Bierer, A.M.,
    2. R.O. Maguire,
    3. M.S. Strickland,
    4. W.E. Thomason, and
    5. R.D. Stewart
    . 2017. Effects of dairy slurry injection on carbon and nitrogen cycling. Soil Science 182:181–187, DOI:10.1097/SS.0000000000000209.
    OpenUrlCrossRef
  10. ↵
    1. Bierer, A.M.,
    2. R.O. Maguire,
    3. M.S. Strickland,
    4. W.E. Thomason, and
    5. R.D. Stewart
    . 2020. Evaluating dairy manure application method on soil health and nitrate. Journal of Soil and Water Conservation 75(4):527-536. https://doi.org/10.2489/jswc.2020.00074.
    OpenUrlAbstract/FREE Full Text
  11. ↵
    1. Bittman, S.,
    2. L. Vilet,
    3. G. Kowalenko,
    4. S. MicGin,
    5. D. Hunt, and
    6. F. Bounaix
    . 2005. Surface-banding liquid manure over aeration slots: A new low-disturbance method for reducing ammonia emissions and improving yield of perennial grasses. Agronomy Journal 97:1304–1313. https://doi.org/10.2134/agronj2004.0277.
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Bouzaiane, O.,
    2. H. Cherif,
    3. F. Ayari,
    4. N. Jedidi, and
    5. A. Hassen
    . 2007. Municipal solid waste compost dose effects on soil microbial biomass determined by chloroform fumigation-extraction and DNA methods. Annals of Microbiology 57:681–686. https://doi.org/10.1007/BF03175374.
    OpenUrl
  13. ↵
    1. Bradford, M.A.,
    2. N. Fierer, and
    3. J.F. Reynolds
    . 2008. Soil carbon stocks in experimental mesocosms are dependent on the rate of labile carbon, nitrogen and phosphorus inputs to soils. Functional Ecology 22:964–974. https://doi.org/10.1111/j.1365-2435.2008.01404.x.
    OpenUrl
  14. ↵
    1. Brandt, R.C.,
    2. H.A. Elliott,
    3. M.A. Adviento-Borbe,
    4. E.F. Wheeler,
    5. P.J. Kleinman, and
    6. D.B. Beegle
    . 2011. Field olfactometry assessment of dairy manure land application methods. Journal of Environmental Quality 40:431–437. https://doi.org/10.2134/jeq2010.0094.
    OpenUrlPubMed
  15. ↵
    1. Bremner, J.M., and
    2. G.A. Breitenbeck
    . 1983. A simple method for determination of ammonium in semimicro-kjeldahl analysis of soils and plant materials using a block digester. Communications in Soil Science and Plant Analysis 14:905–913. https://doi.org/10.1080/00103628309367418.
    OpenUrlWeb of Science
  16. ↵
    1. Cernohlavkova, J.,
    2. J. Jarkovsky,
    3. M. Nesporova, and
    4. J. Hofman
    . 2009. Variability of soil microbial properties: Effects of sampling, handling and storage. Ecotoxicology and Environmental Safety 72:2102–2108. https://doi.org/10.1016/j.ecoenv.2009.04.023.
    OpenUrlPubMed
  17. ↵
    1. Chakraborty, A.,
    2. K. Chakrabarti,
    3. A. Chakraborty, and
    4. S. Ghosh
    . 2011. Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biology and Fertility of Soils 47:227-233, https://doi.org/10.1007/s00374-010-0509-1.
    OpenUrl
  18. ↵
    1. Chen, Y.,
    2. B. Assefa,
    3. W. Arkinremi, and
    4. A. Canada
    . 2010. Soil nutrient levels and crop performance at various lateral positions following liquid manure injection. Agricultural Engineering XII(1):1–18.
  19. ↵
    1. Chen, L.,
    2. C. Gray,
    3. H. Neilbling,
    4. S. Yadanaparthi,
    5. M. Chahine, and
    6. M.E.D.H. Marti
    . 2014. On-farm comparison of two dairy manure application methods in terms of ammonia and odor emissions and costs. Applied Engineering in Agriculture 30:805–813. DOI:10.13031/aea.30.10600.
    OpenUrlCrossRef
  20. ↵
    1. Black
    1. Day, P.R.
    1965. Particle fractionation and particle-size analysis. In Methods of Soil Analysis, ed. Black, p. 545-567. Madison, WI: American Society of Agronomy and Soil Science Society of America.
  21. ↵
    1. Dell, C.J.,
    2. J.J. Meisinger, and
    3. D.B. Beegle
    . 2011. Subsurface application of manures slurries for conservation tillage and pasture soils and their impact on the nitrogen balance. Journal of Environmental Quality 40:352-361. https://doi.org/10.2134/jeq2010.0069.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Dendooven, L.,
    2. E. Bonhomme,
    3. R. Merekx, and
    4. K. Vlassak
    . 1998. Injection of pig slurry and its effects on dynamics of nitrogen and carbon in a loamy soil under laboratory conditions. Biology and Fertility of Soils 52:5–8. https://doi.org/10.1007/s003740050391.
    OpenUrl
  23. ↵
    1. Ding, X.,
    2. X. Han,
    3. Y. Liang,
    4. Y. Qiao,
    5. L. Li, and
    6. N. Li
    . 2012. Changes in soil organic carbon pools after 10 years of continuous manuring combined with chemical fertilizer in a mollisol in china. Soil Tillage Research 122: 36–41. https://doi.org/10.1016/j.still.2012.02.002.
    OpenUrl
  24. ↵
    1. Fierer, N.
    2003. Stress ecology and the dynamics of microbial communities and processes in soil. Ph.D. dissertation, University of California.
  25. ↵
    1. Fierer, N.,
    2. J.M. Craine,
    3. K. Mclauchlan, and
    4. J.P. Schimel
    . 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326. https://doi.org/10.1890/04-1254.
    OpenUrlCrossRefWeb of Science
  26. ↵
    1. Flessa, H., and
    2. F. Beese
    . 2000. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry. Journal of Environmental Quality 29(1):262. https://doi.org/10.2134/jeq2000.00472425002900010033x.
    OpenUrlWeb of Science
  27. ↵
    1. Franzluebbers, A.J., and
    2. M.A. Arshad
    . 1997. Particulate organic carbon content and potential mineralization as affected by tillage and texture. Soil Science Society of America Journal 61:1382-1386. https://doi.org/10.2136/sssaj1997.03615995006100050014x.
    OpenUrlWeb of Science
  28. ↵
    1. Franzluebbers, A.J.,
    2. F.M. Hona, and
    3. D.A. Zuberer
    . 1994. Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biology and Biochemistry 26:1469–1475. https://doi.org/10.1016/0038-0717(94)90086-8.
    OpenUrl
  29. ↵
    1. Franzluebbers, A.J., and
    2. J.A. Stuedemann
    . 2015. Does grazing of cover crops impact biologically active soil carbon and nitrogen fractions under inversion or no tillage management? Journal of Soil and Water Conservation 70(6):365–373. https://doi.org/10.2489/jswc.70.6.365.
    OpenUrlAbstract/FREE Full Text
  30. ↵
    1. Gill, R.A., and
    2. I.C. Burke
    . 2002. Influence of soil depth on the decomposition of Bouteloua gracilis roots in the shortgrass steppe. Plant and Soil 241:233–242. https://doi.org/10.1023/A:1016146805542.
    OpenUrl
  31. ↵
    1. McKeague, J.A. and
    2. E.G. Gregorich
    1. Green, A.J.
    1981. Particle size analysis. In Manual on Soil Sampling and Methods of Analysis, eds. McKeague, J.A. and E.G. Gregorich, p. 4–29. Ottawa, ON, Canada: Canadian Society of Soil Science.
  32. ↵
    1. Hergert, G.W.,
    2. C.S. Wortmann,
    3. R.B. Ferguson,
    4. C.A. Shapiro, and
    5. T.M. Shaver
    , 2012. Using Starter fertilizer for corn, sorghum and soybeans. Leaflet G361. Lincoln: University of Nebraska.
  33. ↵
    1. Jenkinson, D.S.
    1991. Rothamsted long-term experiments: Are they still of use? Agronomy Journal 10:2–10.
    OpenUrl
  34. ↵
    1. Jokela, W.E.,
    2. S.C. Bosworth, and
    3. J.J. Rankin
    . 2014. Sidedressed dairy manure effects on corn yield and residual soil nitrate. Soil Science 179:37-41. DOI:10.1097/SS.0000000000000040.
    OpenUrlCrossRef
  35. ↵
    1. Kallenbach, C., and
    2. A.S. Grandy
    . 2011. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agriculture Ecosystems and Environment 144:241–252. https://doi.org/10.1016/j.agee.2011.08.020.
    OpenUrl
  36. ↵
    1. Kanazawa, S.,
    2. S. Asakawa, and
    3. Y. Takai
    . 1988. Effect of fertilizer and manure application on microbial numbers, biomass, and enzyme activities in volcanic ash soils. Journal of Soil Science and Plant Nutrition 34(3):429-439. https://doi.org/10.1080/00380768.1988.10415698.
    OpenUrl
  37. ↵
    1. Kaps, M., and
    2. W.R. Lamberson
    . 2009. Biostatistics for animal science: An introductory text, 2nd Edition, p. 504. Wallingford, Oxfordshire, UK: CABI Publishing.
  38. ↵
    1. Kirschbaum, M.U.F.
    1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biology and Biochemistry 27:753–760. https://doi.org/10.1016/0038-0717(94)00242-S.
    OpenUrl
  39. ↵
    1. Kleinman, P.,
    2. A. Sharpley,
    3. B. Moyer, and
    4. G. Elwinger
    . 2002. Effect of mineral and manure phosphorus sources on runoff phosphorus. Journal of Environmental Quality 31:2026–2033. https://doi.org/10.2134/jeq2002.2026.
    OpenUrlCrossRefPubMedWeb of Science
  40. ↵
    1. Knepel, K.
    2003. Determination of nitrate in 2M KCl soil extracts by flow injection analysis. Revised by K. Bogren (2003), Quickchem Method 12-107-04-1-B. Loveland, CO: Lachat Instruments.
  41. ↵
    1. Kulesza, S.B.,
    2. R.O. Maguire,
    3. W.E. Thomason,
    4. S.C. Hodges, and
    5. D.H. Pote
    . 2014. Effects of poultry litter injection on ammonia volatilization, nitrogen availability, and nutrient losses in runoff. Soil Science 179:190–196. DOI:10.1097/SS.0000000000000058.
    OpenUrlCrossRef
  42. ↵
    1. Lalande, R.,
    2. B. Gagnon,
    3. R.R. Simard, and
    4. D. Cote
    . 2000. Soil microbial biomass and enzyme activity following liquid hog manure application in a long term field trial. Canadian Journal of Soil Science 80:263-269. https://doi.org/10.4141/S99-064.
    OpenUrl
  43. ↵
    1. Licht, M.A., and
    2. M. Al-Kaisi
    . 2005. Corn response, nitrogen uptake, and water use in strip-tillage compared with no-tillage and chisel plow. Agronomy Journal 97(3):705-710. https://doi.org/10.2134/agronj2004.0102.
    OpenUrlWeb of Science
  44. ↵
    1. Magdoff, F.
    1991. Understanding the magdoff pre-sidedress nitrate test for corn. Journal of Production Agriculture. 4:297-305. http://doi.org/10.2134/jpa1991.0297.
    OpenUrl
  45. ↵
    1. Maguire, R.O.,
    2. D. Beegle,
    3. J. McGrath, and
    4. Q.M. Ketterings
    . 2018. Manure injection in no-till and pasture systems. Publication CSES-22P. Blacksburg, VA: Virginia Cooperative Extension. https://www.pubs.ext.vt.edu/content/dam/pubs_ext_vt_edu/CSES/CSES-22/SPES-5.pdf.
  46. ↵
    1. Maguire, R.O.,
    2. P.J.A. Kleinman,
    3. C.J. Dell,
    4. D.B. Beegle,
    5. R.C. Brandt,
    6. J.M. McGrath, and
    7. Q.M. Ketterings
    . 2011. Manure application technology in reduced tillage and forage systems: A review. Journal of Environmental Quality 40:292–301. https://doi.org/10.2134/jeq2009.0228.
    OpenUrlCrossRefPubMed
  47. ↵
    1. Maguire, R.O.,
    2. W.E. Thomason,
    3. G.K. Evanylo, and
    4. M.M. Alley
    . 2019. Nitrogen soil testing for corn in Virginia. Publication 418-016. Blacksburg, VA: Virginia Cooperative Extension. https://www.pubs.ext.vt.edu/418/418-016/418-016.html.
  48. ↵
    1. Oldfield, E.E.,
    2. A.J. Felson,
    3. S.A. Woods,
    4. R.A. Hallett,
    5. M.S. Strickland, and
    6. M.A. Bradford
    . 2014. Positive effects of afforestation efforts on the health of urban soils. Forest Ecology and Management 313:266-273. https://doi.org/10.1016/j.foreco.2013.11.027.
    OpenUrl
  49. ↵
    1. Peters, J.,
    2. S. Combs,
    3. B. Hoskins,
    4. J. Jarman,
    5. J. Kovar,
    6. M. Watson,
    7. A. Wolf, and
    8. N. Wolf
    . 2003. Recommended methods of manure analysis. Madison, WI: University of Wisconsin-Extension.
  50. ↵
    1. Powell, J.M.,
    2. W.E. Jokela, and
    3. T.H. Misselbrook
    . 2011. Dairy slurry application method impacts ammonia emission and nitrate in no-till corn silage. Journal of Environmental Quality 40:383–392. https://doi.org/10.2134/jeq2010.0082.
    OpenUrlCrossRefPubMed
  51. ↵
    1. Rahman, S.,
    2. Y. Chen,
    3. Q. Zhang,
    4. S. Tessier, and
    5. S. Baidoo
    . 2001. Performance of a liquid manure injector in a soil bin and on established forages. Canadian Biosystems Engineering 43:2.33-2.40.
    OpenUrl
  52. ↵
    1. Rey, A.,
    2. E. Pegoraro, and
    3. P.G. Jarvis
    . 2008. Carbon mineralization rates at different soil depths across a network of European forest sites (forcast). European Journal of Soil Science 59(6):1049-1062. https://doi.org/10.1111/j.1365-2389.2008.01065.x.
    OpenUrlGeoRef
  53. ↵
    1. Rochette, P.,
    2. D.A. Angers, and
    3. D. Co
    . 2000. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: I. carbon dioxide fluxes and microbial biomass carbon. Soil Science Society of America Journal 64:1389–1395.
    OpenUrlGeoRefWeb of Science
  54. ↵
    1. Rochette, P., and
    2. E.G. Gregorich
    . 1998. Dynamics of soil microbial biomass c, soluble organic C and CO2 evolution after three years of manure application. Canadian Journal of Soil Science 78:283-290. https://doi.org/10.4141/S97-066.
    OpenUrl
  55. ↵
    1. Rothamsted
    . 1991. Rothamsted – The classical experiments, Pp. 1-33. Harpenden, England: AFRC Institute of Arable Crops Research. https://doi.org/10.23637/ERADOC-1-189.
  56. ↵
    1. Rotz, C.A,
    2. P.J.A. Kleinman,
    3. C.J. Dell,
    4. T.L. Veith, and
    5. D.B. Beegle
    . 2011. Environmental and economic comparisons of manure application methods in farming systems. Journal of Environmental Quality 40(2):438–448. https://doi.org/10.2134/jeq2010.0063.
    OpenUrlPubMed
  57. ↵
    1. RStudio Team
    . 2018. Rstudio: integrated development for R. Boston, MA: RStudio Inc.
  58. ↵
    1. Safley, L.M.,
    2. G.M. Lessman,
    3. J.D. Wolt, and
    4. M.C. Smith
    . 1980. Comparison of corn yields between broadcast and injected applications of swine-manure slurry. Tennessee Farm and Home Science 144:20-22.
    OpenUrl
  59. ↵
    1. SAS Institute Inc.
    2018. JMP Pro. Version 14. Cary, NC: SAS Institute Inc.
  60. ↵
    1. Sawyer, J.E., and
    2. R.G. Hoeft
    . 1990. Effect of injected liquid beef manure on soil chemical properties and corn root distribution. Journal of Production Agriculture 3:50–55. https://doi.org/10.2134/jpa1990.0050.
    OpenUrl
  61. ↵
    1. Schmitt, M.A.,
    2. S.D. Evans, and
    3. G.W. Randall
    . 1995. Effect of liquid manure application methods on soil nitrogen and corn grain yields. Journal of Production Agriculture 8:186-189. https://doi.org/10.2134/jpa1995.0186.
    OpenUrl
  62. ↵
    1. Schroder, J.J.,
    2. G.D. Vermeulen,
    3. J.R. van der Schoot,
    4. W. van Dijk,
    5. J.F.M. Huijsmans,
    6. G.J.H.M. Meuffels, and
    7. D.A. van der Schans
    . 2015. Maize yields benefit from injected manure positioned bands. European Journal of Agronomy 64:29-36. https://doi.org/10.1016/j.eja.2014.12.011.
    OpenUrl
  63. ↵
    1. Schuster, N.R.
    2015. Effect of manure application method on nutrient and microbial runoff transport and soil biological health indicators. Master’s thesis, University of Nebraska-Lincoln, Biological Systems Engineering.
  64. ↵
    1. Shimadzu
    . 2017. Introducing a new ASTM method for the determination of total nitrogen, and TKN by calculation, in water samples. Columbia, MD: Shimadzu Corporation.
  65. ↵
    1. D. Hillel
    1. Shober, A.L., and
    2. R.O. Maguire
    . 2005. Manure management. In Encyclopedia of Soils in the Environment, 1st ed. ed. D. Hillel. Oxford, UK: Elsevier.
  66. ↵
    1. Sommerfeldt, T.,
    2. C. Chang, and
    3. T. Entz
    . 1988. Long-term annual manure applications increase soil organic matter and nitrogen, and decrease carbon to nitrogen ratio. Soil Science Society of America Journal 52:1668–1672. https://doi.org/10.2136/sssaj1988.03615995005200060030x.
    OpenUrlWeb of Science
  67. ↵
    1. Sorensen, C.G.,
    2. B.H. Jacobsen, and
    3. S.G. Sommer
    . 2003. An assessment tool applied to manure management systems using innovative technologies. Biosystems Engineering 86:315–325. https://doi.org/10.1016/S1537-5110(03)00137-5.
    OpenUrlCrossRefWeb of Science
  68. ↵
    1. Stewart, C.E.,
    2. K. Paustian,
    3. R.T. Conant,
    4. A.F. Plante, and
    5. J. Six
    . 2007. Soil carbon saturation: Concept, evidence and evaluation. Biogeochemistry 86:19–31. https://doi.org/10.1007/s10533-007-9140-0.
    OpenUrlCrossRef
  69. ↵
    1. Strickland, M.S.,
    2. Z.H. Leggett,
    3. E.B. Sucre, and
    4. M.A. Bradford
    . 2015. Biofuel intercropping effects on soil carbon and microbial activity. Ecological Applications 25(1):140–150. https://doi.org/10.1890/14-0285.1.
    OpenUrl
  70. ↵
    1. Sutton, A.L.,
    2. D.W. Nelson,
    3. J.D. Hoff, and
    4. V.B. Mayrose
    . 1982. Effects of injection and surface applications of liquid swine manure on corn yield and soil composition. Journal of Environmental Quality 11:468-472.
    OpenUrlWeb of Science
  71. ↵
    1. Thompson, R.B., and
    2. J.J. Meisinger
    . 2002. Management factors affecting ammonia volatilization from land-applied cattle slurry in the mid-atlantic USA. Journal of Environmental Quality 31:1329. https://doi.org/10.2134/jeq2002.1329.
    OpenUrlCrossRefPubMedWeb of Science
  72. ↵
    1. P. Corey
    1. Tisdale, S.,
    2. W. Nelson,
    3. J. Beaton, and
    4. J. Havlin
    . 1993. Soil Fertility and Fertilizers, 5th edition, ed. P. Corey. New York, NY: Macmillan Publishing Company.
  73. ↵
    1. Van Kessel, J.S.,
    2. J.B. Reeves III., and
    3. J.J. Meisinger
    . 2000. Nitrogen and carbon mineralization of potential manure components. Journal of Environmental Quality 29:1669-1677.
    OpenUrlWeb of Science
  74. ↵
    1. Walsh, O.S.
    1997. Effect of delayed nitrogen fertilization on corn grain yields. Master’s thesis, Oklahoma State University.
  75. ↵
    1. Weatherstem
    . 2019. WeatherSTEM Data mining tool, Montgomery County. https://www.weatherstem.com.
  76. ↵
    1. Westerschulte, M.,
    2. C. Federolf,
    3. H. Pralle,
    4. D. Trautz,
    5. G. Broll, and
    6. H. Olfs
    . 2015. Soil nitrogen dynamics after slurry injection in field trials: Evaluation of a soil sampling strategy. Journal of Plant Nutrition and Soil Science 178:923–934. https://doi.org/10.1002/jpln.201500249.
    OpenUrl
  77. ↵
    1. Wildung, R.,
    2. T. Garland, and
    3. R. Buschbom
    . 1971. The interdependent effects of soil temperature and water content on soil respiration rate and plant root decomposition in arid grassland soils. Soil Biology and Biochemistry. 7:373–378. https://doi.org/10.1016/0038-0717(75)90052-8.
    OpenUrl
  78. ↵
    1. Zhang, L.H.,
    2. Y.N. Chen,
    3. R.F. Zhao, and
    4. W.H. Li
    . 2010. Significance of temperature and soil water content on soil respiration in three desert ecosystems in northwest china. Journal of Arid Environments. 74:1200–1211. https://doi.org/10.1016/j.jaridenv.2010.05.031.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (2)
Journal of Soil and Water Conservation
Vol. 76, Issue 2
March/April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Manure injection alters the spatial distribution of soil nitrate, mineralizable carbon, and microbial biomass
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Manure injection alters the spatial distribution of soil nitrate, mineralizable carbon, and microbial biomass
A.M. Bierer, R.O. Maguire, M.S. Strickland, R.D. Stewart, W.E. Thomason
Journal of Soil and Water Conservation Mar 2021, 76 (2) 175-189; DOI: 10.2489/jswc.2021.00002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Manure injection alters the spatial distribution of soil nitrate, mineralizable carbon, and microbial biomass
A.M. Bierer, R.O. Maguire, M.S. Strickland, R.D. Stewart, W.E. Thomason
Journal of Soil and Water Conservation Mar 2021, 76 (2) 175-189; DOI: 10.2489/jswc.2021.00002
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplemental Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Estimates of soil erosion and best management practice effectiveness at forestry stream crossings in North Carolina
  • Management of nutrient export from diffuse sources in watersheds for environmental protection under uncertainty
  • Simulating behavioral heterogeneity in watershed models: A systematic review of fertilizer use in SWAT studies
Show more Research Section

Similar Articles

Keywords

  • manure injection
  • microbial biomass
  • nitrogen cycling
  • soil health
  • soil nitrate

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society