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Mapping the Soil Vulnerability Index across broad spatial 
extents to guide conservation efforts

THE NEED FOR TARGETED 
AGRICULTURAL CONSERVATION

The 2008 Gulf of Mexico Hypoxia Action 
Plan was developed in response to national 
water quality impairments that were largely 
caused by agricultural land uses within and 
around the US Corn Belt (Alexander et 
al. 2008; Mississippi River Gulf of Mexico 
Watershed Nutrient Task Force 2008). 
The plan prompted states to create nutri-
ent reduction strategies to achieve a 45% 
reduction in total nitrogen (N) and total 
phosphorus (P) loads into the Mississippi 
River, and thereby alleviate the hypoxic 
zone in the Gulf of Mexico (Mississippi 
River Gulf of Mexico Watershed Nutrient 
Task Force 2008). Similar to other state 
strategies, the Iowa Nutrient Reduction 
Strategy (INRS) promotes the wide-
spread and voluntary adoption of best 
management practices (BMPs) to achieve 
nutrient reduction goals. The INRS estab-
lishes goals of 41% and 29% reductions in 
total N and total P, respectively, from non-
point sources from a 1980 to 1996 baseline 
(Iowa Department of Agriculture and Land 
Stewardship et al. 2017). These goals are 
largely dependent on regional conservation 
funding and infrastructure to inform and 
incentivize BMP adoption at individual 
farm scales (Zimmerman et al. 2019a). 

Although billions of dollars have been 
spent to promote conservation, Iowa 
continues to be a primary contributor 
to Gulf of Mexico hypoxia, and there is 
little evidence of progress toward meeting 
environmental quality goals (Schilling et 
al. 2020; Jones et al. 2018; Robertson et 
al. 2014; Alexander et al. 2008; Tomer and 
Locke 2011; Osmond et al. 2012). Lack of 
success at broad-scale conservation efforts 
can be blamed on a complex mix of social, 
economic, and ecological barriers (Atwell 
et al. 2009; Osmond et al. 2012; Mattia et al. 
2018; Zimmerman et al. 2019a); however, 
the historical lack of spatial precision and 
consideration of hydrologic processes in 
BMP application is likely a significant fac-
tor (Osmond et al. 2012; Tomer and Locke 

2011). Effective conservation involves stra-
tegic management of watersheds through 
the implementation of BMPs in a precise 
and scientific manner.

Fortunately, conservation communities 
now recognize targeted conservation as a 
powerful tool that can more effectively and 
efficiently protect waterbodies (Burger et 
al. 2019; Zimmerman et al. 2019b; Tomer 
et al. 2013; Tuppad et al. 2010). By focus-
ing time and resources on areas more 
vulnerable to soil and nutrient loss, tar-
geted conservation can allow for the joint 
alignment of environmental and eco-
nomic objectives, especially if landowners 
incorporate yield information and incen-
tive programs by implementing BMPs on 
less-profitable lands (Burger et al. 2019; 
Zimmerman et al. 2019b). Technological 
advancements, such as remotely sensed 
data, have allowed scientists to more eas-
ily model hydrologic processes (e.g., Soil 
and Water Assessment Tool [SWAT]), and 
develop geospatial planning tools such as 
the Agricultural Conservation Planning 
Framework (ACPF). The ACPF data-
base and ArcGIS Toolbox (Esri 2019) 
allow users to identify agricultural fields 
where runoff potential is high and then 
identify opportunities for implementing 
BMPs in those fields (Tomer et al. 2015). 
While powerful, downsides of ACPF and 
other geospatial planning and hydrologic 
modeling tools are their limited spatial 
extent and required level of expertise 
for use. Accessible and accurate methods 
for identifying environmentally vulner-
able areas across broad spatial extents are 
needed for the widespread application of 
targeted conservation. 

In this exercise, we used high-resolution 
(2 to 10 m [6.6 to 32.8 ft]), open-source 
geospatial data from the state of Iowa, the 
USDA Natural Resources Conservation 
Service (NRCS), and ACPF to charac-
terize the vulnerability of individual farm 
fields to runoff and leaching across Iowa. 
We specifically used the Soil Vulnerability 
Index (SVI) to categorize the runoff and 
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leaching potential of individual agricul-
tural fields based on slope, hydrologic 
soil group, and soil erodibility (K-factor). 
Unlike more resource intensive hydro-
logic models that require significant time 
and expertise, the SVI is a USDA NRCS 
developed index that can be easily applied 
with open source data and a basic knowl-
edge of ArcGIS (USDA NRCS 2012). 
Similar to ACPF, SVI can be used to 
guide and improve watershed manage-
ment by researchers, watershed planners, 
conservation agronomists, and soil and 
water conservationists including those 
working for agricultural agencies, com-
modity groups, and industries. SVI can 
provide a basis for further spatial analysis 
in research and/or local watershed plan-
ning, and inform investments in nutrient 
management, soil health, and water quality 
at multiple scales. 

MAPPING THE SOIL  
VULNERABILITY INDEX 

The SVI can be used to characterize crop-
land runoff and leaching potential with 
datasets that contain slope information 
such as digital elevation models (DEMs), 
land use information, and soils informa-
tion including hydrologic group, soil 
erodibility, coarse fragment content, and 
presence of organic soils. To characterize 
field-level soil runoff and leaching poten-
tial using the SVI across Iowa, we created 
an ArcGIS-based geoprocessing work-
flow to analyze large amounts (>125 GB) 
of high-resolution geospatial data. The 
ACPF database (Tomer et al. 2013, 2015) 
consists of field boundaries, land use infor-
mation, and NRCS gridded Soil Survey 
Geographic (gSSURGO) 10 m resolution 
soils data rasters at the hydrologic unit code 
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12 (HUC12) watershed level. DEMs were 
acquired from the Iowa P-Library series 
(ISU GIS 2016), which are light detec-
tion and ranging (LiDAR) point-cloud 
derived, 2 m (6.6 ft) resolution elevation 
rasters that have been hydro-conditioned 
and assembled for the state of Iowa at the 
HUC12 level (n = 1,615). High resolu-
tion DEMs that account for subtle slope 
differences are necessary for landscapes 
with low relief, like much of Iowa (Lohani 
et al. 2020a; Thompson et al. 2020). We 
used these data as inputs to estimate both 
SVI indices—soil runoff potential and 
soil leaching potential—using a custom 
ArcGIS tool at the HUC12 scale. We ana-
lyzed row crop agricultural fields from 
the ACPF database; specifically, crop fields 
(e.g., corn [Zea mays], soybean [Glycine 
max], alfalfa [Medicago sativa], wheat 
[Triticum aestivum], dry beans) larger than 
6 ha (15 ac). 

Initial SVI classes were estimated at the 
soil map unit level. To calculate the SVI 
indices, we first calculated mean percent-
age slope of each soil map unit from the 
DEMs. For each soil map unit, slope out-
put is evaluated along with the hydrologic 
soil group and soil erodibility to classify the 
runoff potential (table 1) (Thompson et al. 

2020). In addition to these parameters, soil 
leaching potential estimates included the 
ACPF-based coarse fragment content of 
the soil and the presence of organic soils in 
each map unit (table 1) (Thompson et al. 
2020). SVI runoff and leaching potential of 
each field was estimated by examining the 
area-weighted contributions of the soil map 
units in the field. Each field was assigned 
an index value of “High,” “Moderately 
high,” “Moderate,” or “Low” based on the 
thresholds of the slope and soil parameters 
(Thompson et al. 2020). When summariz-
ing by field, each index is estimated in two 
classes: the “dominant” category was based 
on the dominant runoff potential class 
within each field, while “most limiting” 
uses the most limiting runoff potential class 
within the field. Additionally, the percent-
age of the field that each of these classes 
represent is estimated. Once all HUC12 
watersheds were categorized, we aggre-
gated the collection of HUC12 fields to 
HUC8 field feature classes. 

A few caveats should be noted for the 
data we present. The gSSURGO soils data 
we used to estimate SVI in Iowa are col-
lected at the county level, which can lead 
to SVI classification inconsistencies among 
counties. For example, there is a clear dif-

ference in dominant soil runoff potential 
between Calhoun and Greene counties, 
and Webster and Boone counties in Iowa 
(figure 1c). Although NRCS has stan-
dardized measurement methods, current 
soil survey data for each county repre-
sent historical soil surveys that have been 
updated and amended annually by many 
different soil scientists throughout time 
(USDA NRCS n.d.). Exact mechanisms 
or parameters for county-level differ-
ences are unclear and difficult to identify. 
Other caveats of SVI data are discussed 
in Thompson et al. (2020). Importantly, 
because SVI is an index that uses relatively 
few inputs, it does not account for some 
parameters considered to be important in 
determining soil and leaching potential in 
certain geographic locations such as rain-
fall intensity and topsoil depth, and may be 
sensitive to slope, complexity of soil pro-
files, and the presence of artificial drainage 
(Baffaut et al. 2020a, 2020b; Lohani et al. 
2020a; Thompson et al. 2020). We did not 
use hydrological models or monitoring 
data to assess its accuracy as others have 
done with the SVI (Lee et al. 2018; Yasarer 
et al. 2020; Lohani et al. 2020b), due to 
the extensive spatial coverage of our out-
put. However, once high-risk areas are 

Table 1 
Soil vulnerability index (SVI) criteria for surface runoff potential and leaching potential (adapted from Thompson et al. [2020]).

  Hydrologic soil group

Runoff/leaching A B C D

Soil runoff potential
 Low All area Slope < 4 Slope < 2 Slope < 2; K-factor < 0.28
	 Moderate	 None	 4	≤	slope	≤	6;	K-factor	<	0.32	 2	≤	slope	≤	6;	K-factor	<	0.28	 Slope	<	2;	K-factor	≥	0.28
	 Moderately	high	 None	 4	≤	slope	≤	6;	K-factor	≥	0.32	 2	≤	slope	≤	6;	K-factor	≥	0.28	 2	≤	slope	≤	4
	 High	 None	 Slope	>	6	 Slope	>	6	 Slope	>	4
Soil leaching potential*    
	 Low	 All	area	 None	 None	 All	except	organic	soils
	 Moderate	 None	 Slope	≤	12	and	K-factor	≥	0.24	 All	except	organic	soils	 None
	 		 or	slope	>	12	
	 Moderately	high	 Slope	>	12	 3	≤	slope	≤	12	and	K-factor	<	0.24	 None	 None
	 High	 Slope	≤	12	or	soils	 Slope	<	3	and	K-factor	<	0.24		 Soils	classified	as	organic	 Soils	classified	as	organic 
	 		 classified	as	organic	 or	soils	classified	as	organic		 	

Note:	All	slopes	measured	as	percentage.	
*Coarse	fragments	(stones	and	rocks)	in	the	soil	make	it	easier	for	water	to	infiltrate	rather	than	run	off.	If	the	coarse	fragment	content	of	the	soil	is	
greater	than	30%	by	weight,	the	soil	leaching	potential	is	increased	by	two	levels	(moderate	and	moderately	high	increase	to	high,	and	low	increased	
to	moderately	high).	If	the	coarse	fragment	content	is	greater	than	10%	but	less	than	30%,	the	soil	leaching	potential	is	increased	one	level.
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identified through the SVI, runoff and 
leaching potential can be verified through 
monitoring data or hydrologic models and 
combined with field-based knowledge 
and imagery to determine placement of 
conservation practices. 

SOIL VULNERABILITY INDEX 
CLASSIFICATIONS IN IOWA

For both soil runoff and leaching poten-
tial, approximately 86% of agricultural 
fields in Iowa had a dominant soil class 
that represented greater than 50% of the 

field (figure 1). Processing the data to cre-
ate SVI outputs for Iowa took roughly a 
week to complete at the field level. Post-
processing and aggregation of the data 
to the HUC12 and HUC8 level took 
approximately another week to complete. 
These data are freely available for use and 
may be downloaded from the Iowa State 
University GIS Facility’s ACPF project 
page (https://www.gis.iastate.edu/gisf/
projects/acpf).

Using the dominant soil class, 76% 
of row crop fields (7.724689 × 106 ha 

[1.908812 × 107 ac]) were classified as hav-
ing either high or moderately high soil 
runoff potential, while the remaining 24% 
were classified as having either moderate or 
low soil runoff potential (table 2). At the 
HUC8 and HUC12 level, over 85% of the 
watersheds were classified as having high or 
moderately high soil runoff potential, leav-
ing only 15% of the watersheds as moderate 
or low (table 2 and figure 2). In terms of 
soil leaching potential, only 50% of row 
crop fields (5.541369 × 106 ha [1.369302 
× 107 ac]) were classified as either high or 
moderately high, while the other 50% were 
classified as either moderate or low (table 
2). At the HUC8 level, only 34% of water-
sheds were classified as high or moderately 
high soil leaching potential, and at the 
HUC12 level 45% were classified as high 
or moderately high (table 2; figure 2). Using 
the most limiting soil class, 92% (9.628479 
× 106 ha [2.379249 × 107 ac]) of row crop 
fields were classified as having either high 
or moderately high soil runoff potential, 
leaving only 8% of fields classified as either 
moderate or low (table 2). At the HUC8 
and HUC12 level, over 95% of watersheds 
were classified as either high or moderately 
high soil runoff potential, with very few 
classified as moderate or low (table 2). In 
terms of soil leaching potential, 79% of row 
crop fields (8.523451 × 106 ha [2.106191 × 
107 ac]) were categorized as high or moder-
ately high, while 21% were either moderate 
or low (table 2). Soil leaching potential at 
the HUC8 and HUC12 level was high or 
moderately high for over 85% of water-
sheds, while only 15% of the watersheds 
were classified as moderate or low (table 2).

In areas with steeper topography, slope 
is the main determinant of the SVI soil 
runoff potential, whereas hydrologic soil 
group and K-factor are more determi-
nant of the SVI soil runoff potential in 
areas of relatively low relief (Lohani et al. 
2020a). We see this relationship in Iowa, 
where the majority of agricultural fields 
categorized as having high or moder-
ately high soil runoff potential are found 
in landscapes characterized by generally 
higher relief and more erodible soils, such 
as the Loess Hills, Paleozoic Plateau, and 
Southern Iowa Drift Plain regions of Iowa. 
Conversely, in the relatively smooth tilled 
and loamy Des Moines Lobe and Iowan 

Figure 1
(a) Dominant soil runoff potential, and (b) dominant soil leaching potential in Iowa, 
United States, with landforms delineated (Prior 1991), as well as (c) an illustration of 
inconsistencies in dominant soil runoff potential among Iowa counties.
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Surface regions, there is a large number of 
fields categorized as moderate and low soil 
runoff potential. 

Soil leaching potential also follows 
expected patterns that vary with soils. 
Fields with a higher leaching potential are 
found in areas where soils are coarser, and 
lower leaching potential in areas where 
soils are finer and denser (Huddleston 
1996). Lohani et al. (2020a) determined 
that the SVI soil leaching potential is more 
greatly affected by hydrologic soil group 
than slope. This is likely because hydro-
logic soil group reflects a soil’s ability to 
infiltrate water (USDA NRCS 2007). We 
would expect hydrologic soil groups that 
have a high infiltration rate (low runoff 
potential) and coarser soils to have a higher 
leaching potential, and soil groups with a 
low infiltration rate (high runoff poten-
tial) and finer soils to have low leaching 
potential (USDA NRCS 2007). Our maps 
show this relationship, as regions domi-
nated by highly erodible loess and clay 
such as the Loess Hills, Paleozoic Plateau, 
and Southern Iowa Drift Plain are charac-
terized by moderate and low soil leaching 
potential (figure 1). Regions in Iowa that 

Table 2 
Dominant and most limiting soil runoff and leaching potential by field (of 366,636 total), HUC12 (of 1,615 total), HUC8 (of 56 total), 
hectares, and acres in Iowa, United States, categorized by the Soil Vulnerability Index (SVI).

Runoff/       % total % total % total  
leaching SVI category Fields HUC12 HUC8 Ha Ac fields HUC12 HUC8

Dominant	
	 Runoff	 High	 137,792		 761	 28	 3,526,631	 8,714,496	 38	 47	 50
	 	 Moderately	high	 137,918		 640	 22	 4,198,058	 10,373,626	 38	 40	 39
	 	 Moderate	 52,263		 171	 5	 1,634,908	 4,039,946	 14	 11	 9
	 	 Low	 23,840		 43	 1	 638,881	 1,578,709	 7	 3	 2
	 Leaching	 High	 62,915		 185	 1	 1,665,325	 	4,115,107	 17	 11	 2
	 	 Moderately	high	 120,496		 551	 18	 3,876,045	 9,577,915	 33	 34	 32
	 	 Moderate	 123,174		 669	 31	 3,271,051	 8,082,942	 34	 41	 55
	 	 Low	 45,218		 180	 6	 1,186,058	 	2,930,812	 12	 11	 11
Most	limiting	
	 Runoff	 High	 240,079		 1,170	 47	 6,568,013	 16,229,913	 65	 72	 84
	 	 Moderately	high	 98,976		 410	 9	 3,060,466	 7,562,576	 27	 25	 16
	 	 Moderate	 11,332		 34	 0	 337,032	 832,824	 3	 2	 0
	 	 Low	 1,416		 1	 0	 32,967	 81,464	 <1	 <1	 0
	 Leaching	 High	 232,218		 1,279	 44	 7,012,475	 17,328,204	 63	 79	 79
	 	 Moderately	high	 58,757		 143	 6	 1,510,976	 3,733,703	 16	 9	 11
	 	 Moderate	 59,080		 193	 6	 1,435,437	 3,547,041	 16	 11	 11
	 	 Low	 1,748		 0	 0	 39,590	 	97,828	 <1	 0	 0

Figure 2
(a and c) Dominant soil runoff potential and (b and d) dominant soil leaching poten-
tial at the (a and b) HUC8 and (c and d) HUC12 level. 
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are flat to undulating and have more loamy 
or tilled soils, such as the Des Moines Lobe 
and Iowan Surface, are characterized by 
high and moderately high soil leaching 
potential (figure 1). 

USING THE SOIL VULNERABILITY INDEX 
FOR TARGETED CONSERVATION: AN 

IOWA CASE STUDY 
Here we present a method to estimate the 
SVI at the state level, encompassing over 
1,600 HUC12 watersheds and hundreds 
of thousands of fields in which decisions 
to target conservation can be more easily 
made. The SVI has not yet been used across 
agricultural fields at a state level. Therefore, 
the data we present are novel and will be 
valuable to conservation planning at mul-
tiple spatial scales in Iowa. Because Iowa is 
at the crux of national water quality issues 
(i.e., Gulf hypoxia [Schilling et al. 2020; 
Jones et al. 2018]), these data will be essen-
tial to meeting state and national water 
quality goals by more cost effectively 
focusing conservation efforts. 

Over 85% of HUC8 and HUC12 
watersheds in Iowa were categorized as 
having either high or moderately high soil 
runoff potential. Iowa devotes roughly 10 
million ha (25 million ac; 70%) of land to 
row crop agriculture (USDA NASS 2019), 
and most of that cropland lies within 
those high and moderately high runoff 
risk watersheds. Soil leaching potential 
was high and moderately high in only 
50% of HUC8 and HUC12 watersheds. 
Still, most of the land in those watersheds 
is also devoted to row crop agriculture. 
Thus, the areas of Iowa most vulnerable to 
soil runoff and leaching are dominated by 
cropping systems that rely on soil health to 
support Iowa’s agricultural economy. This 
reveals the need for targeted conservation 
and potential conservation opportunities 
across Iowa. 

To illustrate those opportunities and the 
utility of our data in guiding conservation 
and conservation-related research, we iden-
tified a HUC8 (07100008) watershed in 
Iowa with high runoff potential in which 
to demonstrate how the SVI can be used 
to target conservation practices (figure 3). 
Once the HUC8 was selected, all HUC12 
watersheds with high runoff potential were 
identified. We then chose one HUC12 

(071000080504) with high runoff potential 
in which individual agricultural fields with 
defined runoff potential could be further 
investigated. We found 65 row crop fields 
(1,447 ha) out of 85 in the chosen HUC12 
(071000080504) watershed classified as 
having high soil runoff potential (figure 3). 
These fields would be high priority can-
didates for managing resource concerns 
related to soil and water conservation. 

Best management practices such as 
prairie strips could be placed within these 
fields to reduce soil and nutrient loss 
while also enhancing other ecosystem 
services (i.e., pollination, wildlife habitat, 
biodiversity) and maintaining crop yields 
(Schulte et al. 2017). Research has shown 
that replacing as little as 10% of row crop 
land in a given catchment with contour 
prairie strips can reduce sediment loss by 
95%, total P loss by 90%, and total N loss 
by 84% (Helmers et al. 2012; Zhou et al. 
2014). If 10% of the row cropped land 
in each of the 65 fields in this HUC12 
was replaced with prairie strips, a total of 
144.7 ha (357.6 ac) would be converted. 
Within the HUC12 (071000080504), 
we identified a single agricultural field to 

investigate further (figure 3). This field is 
46.5 ha (114.9 ac) of corn/soybean rota-
tion with silty clay loam soils in hydrologic 
groups C and D. The slopes range from 0% 
to 14%; however, the majority of the field 
is characterized by slopes between 0% and 
5%. The combination of soil groups with 
slow infiltration rates and moderate to 
steep slopes in some areas likely resulted 
in this field being classified as having high 
runoff potential. Therefore, conservation 
practices such as prairie strips, grass water-
ways, or sediment control basins placed in 
steeper areas would keep the soil in place 
and reduce soil runoff. 

CONCLUSIONS 
There are a variety of tools used to target 
conservation efforts such as ACPF, SWAT, 
and Agricultural Policy/Environmental 
eXtender (APEX). These tools have been 
used by scientists to understand the effects 
of strategic land management on hydro-
logic processes. Zimmerman et al. (2019b) 
used ACPF to target conservation in a 
small watershed in Iowa and found that 
targeting BMPs in fields with higher N 
loss and opportunity costs was an effective 

Figure 3
An illustration of how Soil Vulnerability Index (SVI) data can be used across HUC8 and 
HUC12 watersheds as well as individual fields in Iowa, United States.
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way to meet water quality goals. Tuppad 
et al. (2010) used SWAT to target BMPs 
in HUC12 watersheds within the Smoky 
Hill River watershed in Kansas either at 
random or based on annual average sedi-
ment yield. Tuppad et al. (2010) found that 
a targeted approach was more effective 
at reducing nutrient and sediment load-
ing throughout the watershed. Mudgal et 
al. (2012) used APEX to develop physi-
cally based indices for delineating critical 
management areas within a 34 ha (84 ac) 
field, and tested the effect of four land 
management scenarios on surface runoff, 
as well as on sediment and atrazine loads. 
Mudgal et al. (2012) found that targeting 
critical management areas was effective 
at reducing atrazine loads and could have 
economic benefits as well. 

Although all three of these tools are 
useful for targeting conservation, they are 
all limited in their spatial application as 
they involve complex analyses that require 
significant resources that are difficult to 
obtain at state, county, or local resource 
management levels (Thompson et al. 2020; 
Chan et al. 2017). An alternative to these 
tools is the SVI, which can be applied 
with basic knowledge of ArcGIS and open 
source data, increasing its accessibility and 
utility in guiding conservation. Since its 
development, the SVI has been used to 
validate and compare other indices and 
water quality metrics (Chan et al. 2017; 
Baffaut et al. 2020a; Lohani et al. 2020a; 
Lohani et al. 2020b), and will be used to 
streamline the assessment of conservation 
needs and delivery services in the NRCS 
Conservation Assessment and Ranking 
Tool (CART) (Baffaut et al. 2020b). 
Beyond published literature discussing 
the SVI’s development, improvement, and 
validation, there have yet to be any stud-
ies that demonstrate and test its ability to 
target conservation. 

Overall, we demonstrated SVI meth-
odology for categorizing the vulnerability 
of Iowa agricultural fields to soil runoff 
and leaching. SVI data can efficiently and 
effectively guide soil and water conserva-
tion efforts at field, HUC12, HUC8, or 
statewide level. SVI results should be used 
to prioritize which watersheds and fields 
might benefit from conservation efforts, 
not to target specific placement of prac-

tices. More work that validates the ability 
of SVI results to prioritize watersheds and 
fields and subsequently improve water and 
soil health might be beneficial for assess-
ing its effectiveness, but will not change 
SVI inputs or results. While others have 
used SVI toward similar outcomes, this is 
the first time the index has been presented 
over such a broad spatial extent. Under a 
targeted conservation framework, these 
data can be used to help protect soil and 
water in Iowa and beyond. Our method-
ology can, furthermore, be applied to any 
state or region to help protect waterbodies 
and communities. 
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