Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleA Section

Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts

Ellen M. Audia, Lisa A. Schulte and David E. James
Journal of Soil and Water Conservation March 2021, 76 (2) 44A-50A; DOI: https://doi.org/10.2489/jswc.2021.1015A
Ellen M. Audia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa A. Schulte
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David E. James
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Alexander, R.,
    2. R. Smith,
    3. G. Schwarz,
    4. E. Boyer,
    5. J. Nolan, and
    6. J. Brakebill
    . 2008. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin. Environmental Science and Technology 42(3):822-830.
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Atwell, R.,
    2. L. Schulte, and
    3. L. Westphal
    . 2009. Landscape, community, countryside: Linking biophysical and social scales in US Corn Belt agricultural landscapes. Landscape Ecology 24(6):791-806.
    OpenUrlCrossRef
  3. ↵
    1. Baffaut, C.,
    2. S. Lohani,
    3. A. Thompson,
    4. A. Davis,
    5. N. Aryal,
    6. D. Bjorneberg,
    7. R.L. Bingner, et al.
    2020a. Evaluation of the Soil Vulnerability Index for artificially drained cropland across eight Conservation Effects Assessment Project watersheds. Journal of Soil and Water Conservation 75(1):28-41. https://doi.org/10.2489/jswc.75.1.28.
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Baffaut, C.,
    2. A. Thompson,
    3. L. Duriancik,
    4. K. Ingram, and
    5. M. Lee Norfleet
    . 2020b. Assessing cultivated cropland inherent vulnerability to sediment and nutrient losses with the soil vulnerability index. Journal of Soil and Water Conservation 75(1):20A-22A. https://doi.org/10.2489/jswc.75.1.20A.
    OpenUrlFREE Full Text
  5. ↵
    1. Burger, L.,
    2. K. Evans,
    3. M. Mcconnell, and
    4. L. Burger
    . 2019. Private lands conservation: A vision for the future. Wildlife Society Bulletin 43(3):398-407.
    OpenUrl
  6. ↵
    1. Chan, R.,
    2. C. Baffaut,
    3. A. Thompson,
    4. A., and
    5. J. Sadler
    . 2017. Validating the Soil Vulnerability Index for a claypan watershed. Catena 148:185-194.
    OpenUrl
  7. ↵
    1. Esri (Environmental Systems Research Institute)
    . 2019. ArcMap 10.7.1. Redlands, CA: ESRI.
  8. ↵
    1. Helmers, M.J.,
    2. X. Zhou,
    3. H. Asbjornsen,
    4. R. Kolka,
    5. M.D. Tomer, and
    6. R.M. Cruse
    . 2012. Sediment removal by prairie filter strips in row-cropped ephemeral watersheds. Journal of Environmental Quality 41(5):1531-1539.
    OpenUrlCrossRefPubMed
  9. ↵
    1. Huddleston, J.
    1996. How soil properties affect groundwater vulnerability to pesticide contamination. Corvallis: Oregon State University Extension Service.
  10. ↵
    1. Iowa Department of Agriculture and Land Stewardship
    . 2017. Iowa nutrient reduction strategy. A science and technology-based framework to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. http://www.nutrientstrategy.iastate.edu/sites/default/files/documents/2%202017%20INRS%20Section%202_Science%20Assessment.pdf.
  11. ↵
    1. ISU GIS (Iowa State University Geographic Information Systems Support and Research Facility)
    . 2016. Iowa 2 meter DEM Database. https://www.gis.iastate.edu/gisf/projects/acpf.
  12. ↵
    1. Jones, C.S.,
    2. J.K. Nielsen,
    3. K.E. Schilling, and
    4. L.J. Weber
    . 2018. Iowa stream nitrate and the Gulf of Mexico. PloS one 13(4):e0195930.
    OpenUrl
  13. ↵
    1. Lee, S.,
    2. A.M. Sadeghi,
    3. G.W. McCarty,
    4. C. Baffaut,
    5. S. Lohani,
    6. L.F. Duriancik,
    7. A. Thompson, et al.
    2018. Assessing the suitability of the Soil Vulnerability Index (SVI) on identifying croplands vulnerable to nitrogen loss using the SWAT model. Catena 167:1-12.
    OpenUrl
  14. ↵
    1. Lohani, S.,
    2. C. Baffaut,
    3. A. Thompson,
    4. N. Aryal,
    5. R. Bingner,
    6. D. Bjorneberg, D.,
    7. D.D. Bosch, et al.
    2020a. Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group. Journal of Soil and Water Conservation 75(1):12-27. https://doi.org/10.2489/jswc.75.1.12.
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Lohani, S.,
    2. C. Baffaut,
    3. A. Thompson, and
    4. E. Sadler
    . 2020b. Soil Vulnerability Index assessment as a tool to explain annual constituent loads in a nested watershed. Journal of Soil and Water Conservation 75(1):42-52. https://doi.org/10.2489/jswc.75.1.42.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Mattia, C.,
    2. S. Lovell, and
    3. A. Davis
    . 2018. Identifying barriers and motivators for adoption of multifunctional perennial cropping systems by landowners in the Upper Sangamon River Watershed, Illinois. Agroforestry Systems 92(5):1155-1169.
    OpenUrl
  17. ↵
    1. Mississippi River Gulf of Mexico Watershed Hypoxia Nutrient Task Force
    . 2008. Gulf Hypoxia Action Plan. https://www.epa.gov/sites/production/files/2015-03/documents/2008_8_28_msbasin_ghap2008_update082608.pdf.
  18. ↵
    1. Mudgal, A.,
    2. C. Baffaut,
    3. S. Anderson,
    4. E. Sadler,
    5. N. Kitchen,
    6. K. Sudduth, and
    7. R. Lerch
    . 2012. Using the Agricultural Policy/Environmental eXtender to develop and validate physically based indices for the delineation of critical management areas. Journal of Soil and Water Conservation 67(4):284-299. https://doi.org/10.2489/jswc.67.4.284.
    OpenUrlAbstract/FREE Full Text
  19. ↵
    1. Osmond, D.,
    2. D. Meals,
    3. D. Hoag,
    4. M. Arabi,
    5. A. Luloff,
    6. G. Jennings,
    7. M. McFarland,
    8. J. Spooner,
    9. A. Sharpley, and
    10. D. Line
    . 2012. Improving conservation practices programming to protect water quality in agricultural watersheds: Lessons learned from the National Institute of Food and Agriculture-Conservation Effects Assessment Project. Journal of Soil and Water Conservation 67(5):122A-127A. https://doi.org/10.2489/jswc.67.5.122A.
    OpenUrlFREE Full Text
  20. ↵
    1. Prior, J.C.
    1991. Landforms of Iowa. Iowa City: University of Iowa Press.
  21. ↵
    1. Robertson, D.,
    2. D. Saad, D., and
    3. G. Schwarz
    . 2014. Spatial variability in nutrient transport by HUC8, state, and subbasin based on Mississippi/Atchafalaya River Basin SPARROW models. Journal of the American Water Resources Association 50(4):988-1009.
    OpenUrl
  22. ↵
    1. Schilling, K.E.,
    2. M.T. Streeter,
    3. A. Seeman,
    4. C.S. Jones, and
    5. C.F. Wolter
    . 2020. Total phosphorus export from Iowa agricultural watersheds: Quantifying the scope and scale of a regional condition. Journal of Hydrology 581:124397.
    OpenUrl
  23. ↵
    1. Schulte, L.A.,
    2. J. Niemi,
    3. M.J. Helmers,
    4. M. Liebman,
    5. J.G. Arbuckle,
    6. D.E. James,
    7. R.K. Kolka, et al.
    2017. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proceedings of the National Academy of Sciences 114(42):11247-11252.
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Thompson, A.,
    2. C. Baffaut,
    3. S. Lohani,
    4. L. Duriancik,
    5. M. Norfleet, and
    6. K. Ingram
    . 2020. Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils. Journal of Soil and Water Conservation 75(1):1-11. https://doi.org/10.2489/jswc.75.1.1.
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Tomer, M., and
    2. M. Locke
    . 2011. The challenge of documenting water quality benefits of conservation practices: A review of USDA-ARS’s conservation effects assessment project watershed studies. Water Science and Technology 64(1):300-310.
    OpenUrlAbstract/FREE Full Text
  26. ↵
    1. Tomer, M.,
    2. S. Porter,
    3. K. Boomer,
    4. D. James,
    5. J. Kostel,
    6. M. Helmers,
    7. T.M. Isenhart, and
    8. E. McLellan
    . 2015. Agricultural Conservation Planning Framework: 1. Developing Multipractice Watershed Planning Scenarios and Assessing Nutrient Reduction Potential. Journal of Environment Quality 44(3):754. https://doi.org/10.2134/jeq2014.09.0386.
    OpenUrl
  27. ↵
    1. Tomer, M.,
    2. S. Porter,
    3. D. James,
    4. K. Boomer,
    5. J. Kostel, and
    6. E. McLellan
    . 2013. Combining precision conservation technologies into a flexible framework to facilitate agricultural watershed planning. Journal of Soil and Water Conservation 68(5):113A-120A. https://doi.org/10.2489/jswc.68.5.113A.
    OpenUrlFREE Full Text
  28. ↵
    1. Tuppad, P.,
    2. K.R. Douglas-Mankin, and
    3. K.A. McVay
    . 2010. Strategic targeting of cropland management using watershed modeling. Agricultural Engineering International: CIGR Journal 12(3-4):12-24.
    OpenUrl
  29. ↵
    1. USDA NASS (National Agricultural Statistics Service)
    . 2019. 2017 Census of Agriculture: Iowa. Washington, DC: USDA National Agricultural Statistics Service. https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_State_Level/Iowa/iav1.pdf.
  30. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . n.d. National Soil Survey Handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242.
  31. ↵
    1. USDA NRCS
    . 2007. National Engineering Handbook: Chapter 7 Hydrologic Soil Groups. USDA NRCS. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17757.wba
  32. ↵
    1. USDA NRCS
    . 2012. Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Missouri River Basin. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stel-prdb1042093.pdf.
  33. ↵
    1. Yasarer, L.M.W.,
    2. S. Lohani,
    3. R.L. Bingner,
    4. M.A. Locke,
    5. C. Baffaut, and
    6. A.L. Thompson
    . 2020. Assessment of the Soil Vulnerability Index and comparison with AnnAGNPS in two Lower Mississippi River Basin watersheds. Journal of Soil and Water Conservation, 75(1):53-61. https://doi.org/10.2489/jswc.75.1.53.
    OpenUrlAbstract/FREE Full Text
  34. ↵
    1. Zimmerman, E.,
    2. J. Tyndall,
    3. L. Schulte, and
    4. G. Larsen
    . 2019a. Farmer and farmland owner views on spatial targeting for soil conservation and water quality. Water Resources Research 55(5):3796-3814.
    OpenUrl
  35. ↵
    1. Zimmerman, E.,
    2. J. Tyndall, and
    3. L. Schulte
    . 2019b. Using spatially targeted conservation to evaluate nitrogen reduction and economic opportunities for best management practice placement in agricultural landscapes. Environmental Management 64(3):313-328.
    OpenUrl
  36. ↵
    1. Zhou, X.,
    2. M.J. Helmers,
    3. H. Asbjornsen,
    4. R. Kolka,
    5. M.D. Tomer, and
    6. R.M. Cruse
    . 2014. Nutrient removal by prairie filter strips in agricultural landscapes. Journal of Soil and Water Conservation 69(1):54-64. https://doi.org/10.2489/jswc.69.1.54.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (2)
Journal of Soil and Water Conservation
Vol. 76, Issue 2
March/April 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
13 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts
Ellen M. Audia, Lisa A. Schulte, David E. James
Journal of Soil and Water Conservation Mar 2021, 76 (2) 44A-50A; DOI: 10.2489/jswc.2021.1015A

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Mapping the Soil Vulnerability Index across broad spatial extents to guide conservation efforts
Ellen M. Audia, Lisa A. Schulte, David E. James
Journal of Soil and Water Conservation Mar 2021, 76 (2) 44A-50A; DOI: 10.2489/jswc.2021.1015A
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • MAPPING THE SOIL VULNERABILITY INDEX
    • SOIL VULNERABILITY INDEX CLASSIFICATIONS IN IOWA
    • USING THE SOIL VULNERABILITY INDEX FOR TARGETED CONSERVATION: AN IOWA CASE STUDY
    • CONCLUSIONS
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

A Section

  • How much grass will grow on your rangelands this year? Grass-Cast sheds light on the question!
  • Increasing agricultural conservation outreach through social science
  • Forest management and biochar for continued ecosystem services
Show more A Section

Conservation in Practice

  • Integrating farmer input and Agricultural Conservation Planning Framework results to develop watershed plans in Iowa
  • Prescribed cattle grazing as a tool for native prairie management: Lessons from the Tualatin River basin, Oregon
Show more Conservation in Practice

Similar Articles

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society