Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar

R. Wang, P. Gao, E. Zhou, Y. Li and G. Zhao
Journal of Soil and Water Conservation May 2021, 76 (3) 199-210; DOI: https://doi.org/10.2489/jswc.2021.00155
R. Wang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. Gao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E. Zhou
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Li
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Zhao
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Al-Ogaidi, A.A.M.,
    2. A. Wayayok,
    3. M.K. Rowshon, and
    4. A.F. Abdullah
    . 2016. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management 176:203–213.
    OpenUrl
  2. ↵
    1. Amran, T.S.T.,
    2. M.P. Ismail,
    3. M.R. Ahmad,
    4. M.S.M. Amin,
    5. M.A. Ismail,
    6. S. Sani,
    7. N.A. Masenwat, and
    8. N.S.M. Basri
    . 2018. Monitoring underground water leakage pattern by ground penetrating radar (GPR) using 800 MHz antenna frequency. IOP Conference Series: Materials Science and Engineering 298.
  3. ↵
    1. Arbat, G.,
    2. J. Puig-Bargués,
    3. M. Duran-Ros,
    4. J. Barragán, and
    5. F.R. De Cartagena
    . 2013. Drip-Irriwater: Computer software to simulate soil wetting patterns under surface drip irrigation. Computers & Electronics in Agriculture 98(7):183–192.
    OpenUrl
  4. ↵
    1. Bae, J., and
    2. S. Dall’erba
    . 2018. Crop production, export of virtual water and water-saving strategies in Arizona. Ecological Economics 146:148–156.
    OpenUrl
  5. ↵
    1. Battam, M.A.,
    2. B.G. Sutton, and
    3. D.G. Boughton
    . 2003. Soil pits as a simple design aid for subsurface drip irrigation systems. Irrigation Science 22(3-4):135–141.
    OpenUrl
  6. ↵
    1. Benedetto, A., and
    2. F. Benedetto
    . 2011. Remote sensing of soil moisture content by GPR signal processing in the frequency domain. IEEE Sensors Journal 11(10):2432–2441.
    OpenUrl
  7. ↵
    1. Benson, A.K.
    1995. Applications of ground penetrating radar in assessing some geological hazards: Examples of groundwater contamination, faults, cavities. Journal of Applied Geophysics 33(1-3):177–193.
    OpenUrlGeoRefWeb of Science
  8. ↵
    1. Chartres, C.
    2014. Is water scarcity a constraint to feeding Asia’s growing population? International Journal of Water Resources Development 30(1):28–36.
    OpenUrl
  9. ↵
    1. Chen, Q.C.,
    2. Z. Wu,
    3. G. She, and
    4. H. Rong
    . 1999. Water distribution and transport in sandy soil under drip irrigation. Irrigation and Drainage 18(1):28–31.
    OpenUrl
  10. ↵
    1. Cook, F.J.,
    2. P.J. Thorburn,
    3. P. Fitch, and
    4. K.L. Bristow
    . 2003. WetUp: A software tool to display approximate wetting patterns from drippers. Irrigation Science 22(3-4):129–134.
    OpenUrl
  11. ↵
    1. Doolittle, J.A.,
    2. B. Jenkinson,
    3. D. Hopkins,
    4. M. Ulmer, and
    5. W. Tuttlee
    . 2006. Hydropedological investigations with ground-penetrating radar (GPR): Estimating water-table depths and local ground-water flow pattern in areas of coarse-textured soils. Geoderma 131(3-4):0–329.
  12. ↵
    1. Grewal, K.S.,
    2. G.D. Buchan, and
    3. P.J. Tonkin
    . 1990. Estimation of field capacity and wilting point of some New Zealand soils from their saturation percentages. New Zealand Journal of Crop and Horticultural Science 18(4):241–246.
    OpenUrl
  13. ↵
    1. Harari, Z.
    1996. Ground-penetrating radar (GPR) for imaging stratigraphic features and groundwater in sand dunes. Journal of Applied Geophysics 36(1):43–52.
    OpenUrlCrossRefGeoRefWeb of Science
  14. ↵
    1. Hinnell, A.C.,
    2. N. Lazarovitch,
    3. A. Furman,
    4. M. Poulton, and
    5. A.W. Warrick
    . 2010. Neuro-Drip: Estimation of subsurface wetting patterns for drip irrigation using neural networks. Irrigation Science 28(6):535–544.
    OpenUrl
  15. ↵
    1. Huisman, J.A.,
    2. S.S. Hubbard,
    3. J.D. Redman, and
    4. A.P. Annan
    . 2003. Measuring soil water content with Ground Penetrating Radar: A review. Vadose Zone Journal 2(4):476–491.
    OpenUrlAbstract/FREE Full Text
  16. ↵
    1. Jafarov, E.E.,
    2. A.D. Parsekian,
    3. K. Schaefer,
    4. L. Liu,
    5. A.C. Chen,
    6. S.K. Panda, and
    7. T. Zhang
    . 2017. Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal 4(7):72–79.
    OpenUrl
  17. ↵
    1. Jaramillo, F., and
    2. G. Destouni
    . 2015. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350:1248–1251.
    OpenUrlAbstract/FREE Full Text
  18. ↵
    1. Kandelous, M.M., and
    2. J. Šimůnek
    . 2010. Comparison of numerical, analytical, and empirical models to estimate wetting patterns for surface and subsurface drip irrigation. Irrigation Science 28(5):435–444.
    OpenUrl
  19. ↵
    1. Kooij, S.V.D.,
    2. M. Zwarteveen,
    3. H. Boesveld, and
    4. M. Kuper
    . 2013. The efficiency of drip irrigation unpacked. Agricultural Water Management 123:103–110.
    OpenUrl
  20. ↵
    1. Lauritsen, T.
    1995. Ground penetrating radar for groundwater prospecting in Eresfjord, central Norway. Journal of Applied Geophysics 34(2):165.
    OpenUrl
  21. ↵
    1. Lindell, D.B.,
    2. G. Wetzstein, and
    3. M. O’Toole
    . 2019. Wave-based non-line-of-sight imaging using fast f-k migration [J]. ACM Transactions on Graphics (TOG) 38(4):1–13.
    OpenUrl
  22. ↵
    1. Liu, X.,
    2. J. Chen,
    3. X. Cui,
    4. Q. Liu,
    5. X. Cao, and
    6. X. Chen
    . 2017. Measurement of soil water content using ground-penetrating radar: A review of current methods. International Journal of Digital Earth 12(3):1–24.
    OpenUrl
  23. ↵
    1. Lowry, C.S.,
    2. D. Fratta, and
    3. M.P. Anderson
    . 2009. Ground penetrating radar and spring formation in a groundwater dominated peat wetland. Journal of Hydrology 373(1-2):68–79.
    OpenUrlCrossRefGeoRefWeb of Science
  24. ↵
    1. Lunt, I.A.,
    2. S.S. Hubbard, and
    3. Y. Rubin
    . 2005. Soil moisture content estimation using ground-penetrating radar reflection data. Journal of Hydrology 307(1-4):0–269.
  25. ↵
    1. Maheswari, K.,
    2. P.S. Kumar,
    3. D. Mysaiah,
    4. K. Ratnamala,
    5. M. Sri Hari Rao, and
    6. T. Seshunarayana
    . 2013. Ground penetrating radar for groundwater exploration in granitic terrains: A case study from Hyderabad. Journal of the Geological Society of India 81(6):781–790.
    OpenUrl
  26. ↵
    1. Mahmoudzadeh, M.R.,
    2. A.P. Francés,
    3. M. Lubczynski, and
    4. S. Lambot
    . 2012. Using ground penetrating radar to investigate the water table depth in weathered granites—Sardon case study, Spain. Journal of Applied Geophysics 79:0–26.
  27. ↵
    1. Paz, C.,
    2. F.J. Alcalá,
    3. J.M. Carvalho, and
    4. L. Ribeiro
    . 2017. Current uses of ground penetrating radar in groundwater-dependent ecosystems research. Science of the Total Environment 595:868–885.
    OpenUrl
  28. ↵
    1. Riese, F.M., and
    2. S. Keller
    . 2018. Fusion of hyperspectral and ground penetrating radar to estimate soil moisture. Computer Vision and Pattern Recognition, arXiv.org. arXiv:1804.05273 [cs.CV], DOI: 10.1109/WHISPERS.2018.8747076.
    OpenUrlCrossRef
  29. ↵
    1. Saito, H.,
    2. S. Kuroda,
    3. T. Iwasaki,
    4. H. Fujimaki,
    5. N. Nagai, and
    6. J. Sala
    . 2018. Tracking infiltration front depth using time-lapse multi-offset gathers collected with array antenna ground penetrating radar. Journal of Visualized Experiments 135:56847.
    OpenUrl
  30. ↵
    1. Sandmeier, K.J.
    2008. ReflexW Version 5.0. Windows 9x/NT/2000/XP-program for the processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data.
  31. ↵
    1. Smith, M.
    2014. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA. Masters’ Thesis, East Carolina University.
  32. ↵
    1. Subbaiah, R.
    2013. A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science 31(3):225–258.
    OpenUrl
  33. ↵
    1. Topp, G.C.,
    2. J.L. Davis, and
    3. A.P. Annan
    . 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research 16(3):574–582.
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Toumi, J.,
    2. S. Er-Raki,
    3. J. Ezzahar,
    4. S. Khabba,
    5. L. Jarlan, and
    6. A. Chehbouni
    . 2016. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management 163:219–235.
    OpenUrl
  35. ↵
    1. Zhao, Y., and
    2. M. Li
    . 2014. Analysis of soil surface ponding radius movement model under point source drip irrigation. Water Saving Irrigation (12):16–19.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (3)
Journal of Soil and Water Conservation
Vol. 76, Issue 3
May/June 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar
R. Wang, P. Gao, E. Zhou, Y. Li, G. Zhao
Journal of Soil and Water Conservation May 2021, 76 (3) 199-210; DOI: 10.2489/jswc.2021.00155

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Experimental detection of the volume of the drip irrigation soil wetted body using Ground Penetrating Radar
R. Wang, P. Gao, E. Zhou, Y. Li, G. Zhao
Journal of Soil and Water Conservation May 2021, 76 (3) 199-210; DOI: 10.2489/jswc.2021.00155
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Management of nutrient export from diffuse sources in watersheds for environmental protection under uncertainty
Show more Research Section

Similar Articles

Keywords

  • drip irrigation
  • Ground Penetrating Radar
  • nondestructive detection
  • soil wetted body volume

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society