Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China

X. Bai, Y. Yang, T. Huang and B. Liu
Journal of Soil and Water Conservation July 2021, 76 (4) 303-316; DOI: https://doi.org/10.2489/jswc.2021.00009
X. Bai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Y. Yang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T. Huang
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B. Liu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

Abstract

Soil particle size distribution (PSD) is a critical parameter for soil loss estimation in many water erosion models. The laser diffraction method (LDM) has been increasingly applied for soil PSD determination in recent decades, and its applicability and reliability need systematical examinations. The objective was to evaluate the performance of LDM for PSD determination of five soil orders in the water erosion region of China relative to the traditional sieve-pipette method (SPM). A total of 465 soil samples were collected in the five water erosion subregions of China, which correspond to five soil orders of Mollisols, Alfisols, Entisols, Inceptisols, and Oxisols. All the samples were analyzed with LDM for the four size fractions widely employed in water erosion models (i.e., 100 to 2,000, 53 to 100, 2 to 53, and <2 μm), and the corresponding results were compared to those obtained by SPM. The comparisons show varying results between LDM and SPM for the sand content, or the two sand-sized fractions of 100 to 2,000 and 53 to 100 μm. LDM consistently overestimated the silt content and underestimated the clay fraction, yet the magnitude of either the overestimation or underestimation varied among soil orders. The PSD discrepancies shifted the textural classes of 44.8% to 96.2% of the soil samples and, on average, increased the soil erodibility K factor by 0.010 to 0.034 t MJ–1 h mm–1 for different soil orders. The optimal clay/silt and silt/sand boundaries of LDM were derived to match the size fractions measured by SPM. Nevertheless, except for the silt/sand boundary of 58.2 μm for one soil order, each of the other threshold boundaries held a Lin’s concordance correlation coefficient less than 0.8, suggesting moderate or poor agreement between LDM and SPM. Linear regression models were also established to convert the four size fractions between the two methods for all the samples as well as for each soil order. However, not all the conversion models were statistically significant at the level of 0.05. Those that were significant varied among soil orders for each size fraction. These findings hold important practical implications for soil PSD determination and water erosion modeling in China and elsewhere.

Key words:
  • laser diffraction method
  • Lin’s concordance correlation coefficient
  • sieve-pipette method
  • soil order
  • soil particle size distribution
  • water erosion region of China
  • © 2021 by the Soil and Water Conservation Society
View Full Text

This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.

Log in using your username and password

Forgot your user name or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (4)
Journal of Soil and Water Conservation
Vol. 76, Issue 4
July/August 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 7 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China
X. Bai, Y. Yang, T. Huang, B. Liu
Journal of Soil and Water Conservation Jul 2021, 76 (4) 303-316; DOI: 10.2489/jswc.2021.00009

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Applicability of laser diffraction method for soil particle size distribution analysis of five soil orders in the water erosion region of China
X. Bai, Y. Yang, T. Huang, B. Liu
Journal of Soil and Water Conservation Jul 2021, 76 (4) 303-316; DOI: 10.2489/jswc.2021.00009
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • laser diffraction method
  • Lin’s concordance correlation coefficient
  • sieve-pipette method
  • soil order
  • soil particle size distribution
  • water erosion region of China

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society