Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleResearch Section

Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer

A. Loss, B.S. Ventura, V. Müller, R. Gonzatto, L.F. Zin Battisti, M. Gonçalves Lintemani, M. Eduarda da Costa Erthal, R. Fagan Vidal, G. Scopel, C.R. Lourenzi, G. Brunetto, C. Marchezan, C.A. Ceretta and J.J. Comin
Journal of Soil and Water Conservation November 2021, 76 (6) 547-557; DOI: https://doi.org/10.2489/jswc.2021.00165
A. Loss
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
B.S. Ventura
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Müller Júnior
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Gonzatto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L.F. Zin Battisti
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Gonçalves Lintemani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Eduarda da Costa Erthal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. Fagan Vidal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Scopel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.R. Lourenzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Brunetto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Marchezan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.A. Ceretta
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.J. Comin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Aguilera, P.,
    2. G. Briceño,
    3. M.L. Mora,
    4. R. Demanet, and
    5. G.R.C. Palma
    . 2010. Effect of liquid cow manure on chemical and biological properties in an andisol. Revista de la Ciencia del Suelo y Nutrición Vegetal 10(2):158–169. http://dx.doi.org/10.4067/S0718-27912010000200007.
    OpenUrl
  2. ↵
    1. Altmann, R., and
    2. A.C. Oltramari
    . 2004. A agricultura orgânica na região da Grande Florianópolis; indicadores de desenvolvimento. Florianópolis: Instituto Cepa/SC.
  3. ↵
    1. Amezketa, E.
    1999. Soil Aggregate stability: A review. Journal of Sustainable Agriculture 14:83–151. http://Dx.doi.org/10.1300/J064v14n02_08.
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Andrade, A.P.,
    2. L.P. Rauber,
    3. B. Bagio,
    4. N.H. Wolschick,
    5. A.L. Mafra, and
    6. I. Bertol
    . 2020. Chemical and physical fractionation of the organic matter of a cambisol after 21 years under different preparations. Revista de Agricultura 95(1):1–12. https://doi.org/10.37856/bja.v95i1.3533.
    OpenUrl
  5. ↵
    1. Andrade, A.P.,
    2. L.P. Rauber,
    3. A.L. Mafra,
    4. D. Baretta,
    5. M.G. Rosa,
    6. A. Friederichs,
    7. M.S.H. Mafra, and
    8. A.C. Casara
    . 2016. Changes in physical properties and organic carbon of a Kandiudox fertilized with manure. Ciência Rural 46(5):809–814. http://dx.doi.org/10.1590/0103-8478cr20150540.
    OpenUrl
  6. ↵
    1. Antoneli, V.,
    2. A.C. Mosele,
    3. J.A. Bednarz,
    4. M. Pulido-Fernández,
    5. J. Lozano-Parra,
    6. S.D. Keesstra, and
    7. J. Rodrigo-Comino
    . 2019. Effects of applying liquid swine manure on soil quality and yield production in tropical soybean crops (Paraná, Brazil). Sustainability 11:3898. https://doi.org/10.3390/su11143898.
    OpenUrl
  7. ↵
    1. Arruda, C.A.O.,
    2. M.V. Alves,
    3. A.L. Mafra,
    4. P.C. Cassol,
    5. J.A. Albuquerque, and
    6. J.C.P. Santos
    . 2010. Aplicação de dejeto suíno e estrutura de um Latossolo Vermelho sob semeadura direta. Ciência e Agrotecnologia 34(4):804–809. https://doi.org/10.1590/S1413-70542010000400002.
    OpenUrl
  8. ↵
    1. Baldotto, M.A., and
    2. L.E.B. Baldotto
    . 2018. Relationships between soil quality indicators, redox properties, and bioactivity of humic substances of soils under integrated farming, livestock, and forestry. Revista Ceres 65(4):373–380. https://doi.org/10.1590/0034-737x201865040010.
    OpenUrl
  9. ↵
    1. Barbosa, G.M.C.,
    2. J.F. Oliveira,
    3. M. Miyazawa,
    4. D.B. Ruiz, and
    5. J. Tavares Filho
    . 2015. Aggregation and clay dispersion of an oxisol treated with swine and poultry manures. Soil and Tillage Research 146(Part B):279–285. https://doi.org/10.1016/j.still.2014.09.022.
    OpenUrl
  10. ↵
    1. G.A. Santos
    1. Bayer, C., and
    2. J. Mielniczuk
    . 2008. Dinâmica e função da matéria orgânica. In Fundamentos da Matéria Orgânica do Solo, 2nd edition, ed. G.A. Santos. Porto Alegre: Metrópole.
  11. ↵
    1. Blanco-Caqui, H.,
    2. T.M. Shaver,
    3. J.L. Lindquist,
    4. C.A. Shapiro,
    5. R.W. Elmore,
    6. C.A. Francis, and
    7. G.W. Hergert
    . 2015. Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal 107:2449. https://doi.org/10.2134/agronj15.0086.
    OpenUrlCrossRef
  12. ↵
    1. Cardoso, E.J.B.N.,
    2. R.L.F. Vasconcellos,
    3. D. Bini,
    4. M.Y.H. Miyauchi,
    5. C.A. Santos,
    6. P.R.L. Alves,
    7. A.M. Paula,
    8. A.S. Nakatani,
    9. J.M. Pereira, and
    10. M.A. Nogueira
    . 2013. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agrícola 70(4):274–289. http://dx.doi.org/10.1590/S0103-90162013000400009.
    OpenUrl
  13. ↵
    1. N. Curi,
    2. J.J. Marques,
    3. L.R.G. Guilherme,
    4. J.M. Lima,
    5. A.S. Lopes, and
    6. V.H. Alvares
    1. Coelho, A.M.
    2003. Agricultura de precisão: Manejo da variabilidade espacial e temporal dos solos e das culturas. In Tópicos em Ciência do Solo, ed. N. Curi, J.J. Marques, L.R.G. Guilherme, J.M. Lima, A.S. Lopes, and V.H. Alvares. Viçosa: Sociedade Brasileira de Ciência do Solo.
  14. ↵
    1. Comin, J.J.,
    2. A. Loss,
    3. M. Veiga,
    4. R. Guardini,
    5. D.E. Schmitt,
    6. P.A.V. Oliveira,
    7. P. Belli Filho,
    8. R. da Rosa Couto,
    9. L. Benedet,
    10. V. Müller Júnior., and
    11. G. Brunetto
    . 2013. Physical properties and organic carbon content of a Typic Hapludult soil fertilised with pig slurry and pig litter in a no-tillage system. Soil Research 51(5):459–470. https://doi.org/10.1071/SR13130.
    OpenUrl
  15. ↵
    1. CQFS-RS/SC (Comissão de Química e Fertilidade do Solo – RS – SC)
    . 2016. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 11nd ed. Porto Alegre: SBCS - Núcleo Regional Sul/UFRGS.
  16. ↵
    1. Conceição, P.C.,
    2. T.J.C. Amado,
    3. J. Mielniczuk, and
    4. E. Spagnollo
    . 2005. Qualidade do solo em sistemas de manejo avaliada pela dinâmica da matéria orgânica e atributos relacionados. Revista Brasileira de Ciência do Solo 29(5):777–788. https://doi.org/10.1590/S0100-06832005000500013.
    OpenUrl
  17. ↵
    1. Costa Junior, C.,
    2. M.C. Píccolo,
    3. M. Siqueira Neto,
    4. P.B. Camargo,
    5. C.C. Cerri, and
    6. M. Bernoux
    . 2012. Carbono em agregados do solo sob vegetação nativa, pastagem e sistemas agrícolas no bioma Cerrado. Revista Brasileira de Ciência do Solo 33(4):1311–1322. https://doi.org/10.1590/S0100-06832012000400025.
    OpenUrl
  18. ↵
    1. Diacono, M., and
    2. F. Montemurro
    . 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development 30:401–422. https://doi.org/10.1051/agro/2009040.
    OpenUrl
  19. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Doran, J.W., and
    2. T.B. Parkin
    . 1994. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment, Volume 35, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 3–21. Madison, WI: Soil Science Society of America. http://dx.doi.org/10.2136/sssaspecpub35.c1
    OpenUrl
  20. ↵
    1. Doran, J.W., and
    2. M.R. Zeiss
    . 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology 15(1):3–11. DOI:10.1016/S0929-1393(00)00067-6.
    OpenUrlCrossRef
  21. ↵
    1. Edwards, A.P., and
    2. J.M. Bremner
    . 1967. Microaggregates in soils. Journal of Soil Science 18:64–73. http://dx.doi.org/10.1111/j.1365-2389.1967.tb01488.x.
    OpenUrl
  22. ↵
    1. Embrapa
    . 2017. Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solos, 3rd edition. Rio de Janeiro: Embrapa Solos.
  23. ↵
    1. Epagri/Cepa (Centro de Socioeconomia e Planejamento Agrícola)
    . 2016. Síntese Anual da Agricultura de Santa Catarina 2015-2016. http://docweb.epagri.sc.gov.br/website_cepa/publicacoes/Sintese_2016.pdf.
  24. ↵
    1. Franzluebbers, A.J.
    2002. Soil organic matter stratification ratio as an indicator of soil quality. Soil and Tillage Research 66(2):95–106. https://doi.org/10.1016/S0167-1987(02)00018-1.
    OpenUrlCrossRef
  25. ↵
    1. Freitas Alves, C.T.,
    2. P.C. Cassol,
    3. W. Sacomori,
    4. L.C. Gatiboni,
    5. P.R. Ernani,
    6. C. Aita,
    7. J. Panisson, and
    8. A.K.T. Ferreira
    . 2017. Influence of fertilization with swine manure and mineral fertilizer added by nitrification inhibitor on corn yield and nutrition. Revista de Ciências Agroveterinárias 16(1):2–10. https://doi./10.5965/223811711612017002.
    OpenUrl
  26. ↵
    1. Giumbelli, L.D.,
    2. A. Loss,
    3. B.S. Ventura,
    4. E. Santos Junior.,
    5. J. Almeida,
    6. M.C. Piccolo,
    7. A.L. Mafra,
    8. C. Kurtz,
    9. G. Brunetto, and
    10. J.J. Comin
    . 2020. Aggregation index, carbon, nitrogen, and natural abundance of 13C and 15N in soil aggregates and bulk soil cultivated with onion under crop successions and rotations. Soil Research 58(7):622–635. https://doi.org/10.1071/SR19346.
    OpenUrl
  27. ↵
    1. Hossain, M.Z.,
    2. P. Von Fragstein,
    3. J. Niemsdorff, and
    4. J. Heß
    . 2017. Effect of different organic wastes on soil properties and plant growth and yield: A review. Scientia Agriculturae Bohemica 48(4):224–237. https://doi.org/10.1515/sab-2017-0030.
    OpenUrl
  28. ↵
    1. King, T.,
    2. J.J. Schoenau, and
    3. S.S. Malhi
    . 2015. Effect of application of liquid swine manure on soil organic carbon and enzyme activities in two contrasting saskatchewan soils. Sustainable Agriculture Research 4(1):13–25. http://dx.doi.org/10.5539/sar.v4n1p13.
    OpenUrl
  29. ↵
    1. Liu, A.,
    2. B.L. Ma, and
    3. A.A. Bomke
    . 2005. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal 69(6):2041–2048. https://doi.org/10.2136/sssaj2005.0032.
    OpenUrlCrossRefWeb of Science
  30. ↵
    1. Loss, A.,
    2. R.R. Couto,
    3. G. Brunetto,
    4. M. Veiga,
    5. M. Toselli, and
    6. E. Baldi
    . 2019. Animal manure as fertilizer: Changes in soil attributes, productivity and food composition. International Journal of Research - Granthaalayah 7(9):307–331. https://doi.org/10.29121/granthaalayah.v7.i9.2019.615.
    OpenUrl
  31. ↵
    1. Loss, A.,
    2. G.W. Ferreira,
    3. J.J. Comin,
    4. M.G. Pereira,
    5. V.A. Freo,
    6. M.C. Piccolo, and
    7. G. Bruneto
    . 2020. Carbono orgânico total e oxidável em agregados de argissolo adubado com dejetos suínos. Ciencia del Suelo 38(1):12–20. http://www.suelos.org.ar/publicaciones/Volumen38n1/3-506.pdf.
    OpenUrl
  32. ↵
    1. Loss, A.,
    2. C.R. Lourenzi,
    3. C.A. Mergen Junior.,
    4. E. Santos Junior.,
    5. L. Benedet,
    6. M.G. Pereira,
    7. M.C. Piccolo,
    8. G. Brunetto,
    9. P.E. Lovato, and
    10. J.J. Comin
    . 2017. Carbon, nitrogen and natural abundance of 13C and 15N in biogenic and physicogenic aggregates in a soil with 10 years of pig manure application. Soil and Tillage Research 166:52–58. http://dx.doi.org/10.1016/j.still.2016.10.007.
    OpenUrl
  33. ↵
    1. Loss, A.,
    2. M.G. Pereira,
    3. E.M. Costa, and
    4. S.J. Beutler
    . 2014. Carbon, nitrogen and the natural abundance of 13C and 15N in macro and microaggregates. Idesia 32:15–21.
    OpenUrl
  34. ↵
    1. Lourenzi, C.R.,
    2. C.A. Ceretta,
    3. J.B. Cerini,
    4. P.A.A. Ferreira,
    5. F. Lorensini,
    6. E. Girotto,
    7. T.L. Tiecher,
    8. D.E. Schapanski, and
    9. G. Brunetto
    . 2014. Available content, surface runoff and leaching of phosphorus forms in a typic hapludalf treated with organic and mineral nutrient sources. Revista Brasileira de Ciência do Solo 38(2):544–556. https://doi.org/10.1590/S0100-06832014000200019.
    OpenUrl
  35. ↵
    1. Lourenzi, C.R.,
    2. C.A. Ceretta,
    3. L.S. Silva,
    4. G. Trentin,
    5. E. Girotto,
    6. F. Lorensini,
    7. T.L. Tiecher, and
    8. G. Brunetto
    . 2011. Soil chemical properties related to acidity under successive pig slurry applications. Revista Brasileira de Ciência do Solo 35(5):1827–1836. https://doi.org/10.1590/S0100-06832011000500037.
    OpenUrl
  36. ↵
    1. Lourenzi, C.R.,
    2. E.E. Scherer,
    3. C.A. Ceretta,
    4. T.L. Tiecher,
    5. A. Cancian,
    6. P.A.A. Ferreira, and
    7. G. Brunetto
    . 2016. Atributos químicos de Latossolo após sucessivas aplicações de composto orgânico de dejeto líquido de suínos. Pesquisa Agropecuária Brasileira 51(3):233–242. https://doi.org/10.1590/s0100-204x2016000300005.
    OpenUrl
  37. ↵
    1. Machado, P.,
    2. S. Sohi, and
    3. J. Gaunt
    . 2003. Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol. Soil Use and Management 19(3):250–256. https://doi.111/j.1475-2743.2003.tb00311.x.
    OpenUrl
  38. ↵
    1. Mafra, M.S.H.,
    2. P.C. Cassol,
    3. J.A. Albuquerque,
    4. M.A. Grohskopf,
    5. A.P. Andrade,
    6. L.P. Rauber, and
    7. A. Friederichs
    . 2015. Organic carbon contents and stocks in particle size fractions of a typic hapludox fertilized with pig slurry and soluble fertilizer. Revista Brasileira de Ciência do Solo 39(4):1161–1171. https://Doi.Org/10.1590/01000683rbcs20140177.
    OpenUrl
  39. ↵
    1. Maillard, E.,
    2. D.A. Angers,
    3. M. Chantigny,
    4. S. Bittman,
    5. P. Rochette,
    6. G. Lévesque,
    7. D. Hunt, and
    8. L.E. Parent
    . 2015. Carbon accumulates in organo-mineral complexes after long-term liquid dairy manure application. Agriculture, Ecosystems and Environment 202(1):108–119. https://doi.org/10.1016/j.agee.2014.12.013.
    OpenUrl
  40. ↵
    1. Maillard, E.,
    2. D.A. Angers,
    3. M. Chantigny,
    4. J. Lafound,
    5. D. Pageau,
    6. P. Rochette,
    7. G. Lévesque,
    8. M.L. Leclerc, and
    9. L.E. Parent
    . 2016. Greater accumulation of soil organic carbon after liquid dairy manure application under cereal-forage rotation than cereal monoculture. Agriculture, Ecosystems and Environment 233(3):171–178. https://doi.org/10.1016/j.agee.2016.09.011.
    OpenUrl
  41. ↵
    1. Marchezan, C.,
    2. P.A.A. Ferreira,
    3. L.S. Silva,
    4. A. Bacca,
    5. A.V. Krug,
    6. R. Nicoloso,
    7. C.P. Tarouco,
    8. T.L. Tiecher,
    9. G. Brunetto, and
    10. C.A. Ceretta
    . 2020. Nitrogen availability and physiological response of corn after 12 years with organic and mineral fertilization. Journal of Soil Science and Plant Nutrition 20(1):979–989. https://doi.org/10.1007/s42729-020-00185-2.
    OpenUrl
  42. ↵
    1. Mellek, J.E.,
    2. J. Dieckow,
    3. V.L. Silva,
    4. N. Faveretto,
    5. V. Pauletti,
    6. F.M. Vezzani, and
    7. J.L.M. Souza
    . 2010. Dairy liquid manure and no-tillage: Physical and hydraulic properties and carbon stocks in a Cambisol of Southern Brazil. Soil and Tillage Research 110(1):69–76. https://doi.org/10.1016/j.still.2010.06.005.
    OpenUrl
  43. ↵
    1. Mergen Junior, C.A.,
    2. A. Loss,
    3. E. Santos Junior.,
    4. G.W. Ferreira,
    5. J.J. Comin,
    6. P.E. Lovato, and
    7. G. Brunetto
    . 2019. Atributos químicos em agregados biogênicos e fisiogênicos de solo submetido à aplicação com dejetos suínos. Revista Brasileira de Ciencias Agrarias 14(1):e5620. https://doi.org/10.5039/agraria.v14i1a5620.
    OpenUrl
  44. ↵
    1. Moita Neto, J.M., and
    2. G.C. Moita
    . 1998. Uma introdução à análise exploratória de dados multivariados. Química Nova 21(4):467–469. https://www.scielo.br/pdf/qn/v21n4/3193.pdf.
    OpenUrl
  45. ↵
    1. Morales, D.M.,
    2. M.M. Vargas,
    3. M.P. Oliveira,
    4. B.L. Taffe,
    5. J.J. Comin,
    6. C.R.F. Soares, and
    7. P.E. Lovato
    . 2016. Response of soil microbiota to nine-year application of swine manure and urea. Ciencia Rural 26(3):260–266. http://dx.doi.org/10.1590/0103-8478cr20140565.
    OpenUrl
  46. ↵
    1. Oliveira, R.A.,
    2. J.J. Comin,
    3. T.L. Tiecher,
    4. R. Piccin,
    5. L.M. Somavilla,
    6. A. Loss,
    7. C.R. Lourenzi,
    8. C. Kürtz, and
    9. G. Brunetto
    . 2017. Release of phosphorus forms from cover crop residues in agroecological no-till onion production. Revista Brasileira de Ciência do Solo 41:e0160272. https://doi.org/10.1590/18069657rbcs20160272.
    OpenUrl
  47. ↵
    1. Rauber, L.P.,
    2. A.P. Andrade,
    3. A. Friederichs,
    4. A.L. Mafra,
    5. D. Baretta,
    6. M.G. Rosa,
    7. M.S.H. Mafra, and
    8. J.C. Correa
    . 2018. Soil physical indicators of management systems in traditional agricultural areas under manure application. Scientia Agricola 75(4):354–359. https://doi.org/10.1590/1678-992x-2016-0453.
    OpenUrl
  48. ↵
    1. Rauber, L.P.,
    2. C.D. Piccolla,
    3. A.P. Andrade,
    4. A. Friederichs,
    5. A.L. Mafra,
    6. J.C. Corrêa, and
    7. J.A. Albuquerque
    . 2012. Physical properties and organic carbon content of a Rhodic Kandiudox fertilized with pig slurry and poultry litter. Revista Brasileira de Ciência do Solo 36(4):1323–1332. https://doi.org/10.1590/S0100-06832012000400026.
    OpenUrl
  49. ↵
    1. Rodrigues, L.A.T.,
    2. S.J. Giacomini,
    3. C. Aita,
    4. C.R. Lourenzi,
    5. G. Brunetto,
    6. A. Bacca, and
    7. C.A. Ceretta
    . 2021. Short- and long-term effects of animal manures and mineral fertilizer on carbon stocks in subtropical soil under no-tillage. Geoderma 386:e114913. https://doi.org/10.1016/j.geoderma.2020.114913.
    OpenUrl
  50. ↵
    1. Rossetti, K.V., and
    2. J.F. Centurion
    . 2015. Estoque de carbono e atributos físicos de um Latossolo em cronossequência sob diferentes manejos. Revista Brasileira de Engenharia Agrícola e Ambiental 19(3):252–258. http://dx.doi.org/10.1590/1807-1929/agriambi.v19n3p252-258.
    OpenUrl
  51. ↵
    1. Sacomori, W.,
    2. P.C. Cassol,
    3. P.R. Ernani,
    4. D.J. Miquelutti,
    5. J.J. Comin, and
    6. L.C. Gatiboni
    . 2016. Content of nutrients in the subsoil solution of a crop fertilized with pig slurry. Revista de Ciências Agroveterinárias 15(3):245–258. https://doi./10.5965/223811711532016245.
    OpenUrl
  52. ↵
    1. Sharma, S., and
    2. S. Schlesinger
    . 2017. The rise of big meat: Brazil’s extractive industry. Institute for Agriculture and Trade Policy (IATP). https://fase.org.br/wp-content/ads/2017/12/2017_11_30_RiseBigMeat_f.pdf.
  53. ↵
    1. E.J. Meurer
    1. Silva, L.S.,
    2. F.A.O. Camargo, and
    3. C.A. Ceretta
    . 2004. Composição da fase sólida orgânica. In Fundamentos de Química do Solo, ed. E.J. Meurer. Porto Alegre: Gênesis.
  54. ↵
    1. Simioni, F.J.,
    2. M.L. Bartz,
    3. L.P. Wildner,
    4. E. Spagnollo,
    5. M. Veiga, and
    6. D. Baretta
    . 2017. Indicadores de eficiência técnica e econômica do milho cultivado em sistema plantio direto no Estado de Santa Catarina, Brasil. Revista Ceres 64(3):232–241. http://dx.doi.org/10.1590/0034-737x201764030003.
    OpenUrl
  55. ↵
    1. Six, J.,
    2. H. Bossuyt,
    3. S. Degryze, and
    4. K. Denef
    . 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research 79(1):7–31. http://dx.doi.org/10.1016/j.still.2004.03.008.
    OpenUrlCrossRef
  56. ↵
    1. Soil Survey Staff
    . 2014. Keys to Soil Taxonomy, 12th edition. Washington, DC: USDA Natural Resources Conservation Service. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580.
  57. ↵
    1. Tedesco, M.J.,
    2. C. Gianello,
    3. C.A. Bissani,
    4. H. Bohnen, and
    5. S.J. Volkweiss
    . 1995. Análise de solo, plantas e outros minerais. Porto Alegre: Faculdade de Agronomia.
  58. ↵
    1. Tisdall, J.M., and
    2. J.M. Oades
    . 1982. Organic-matter and water-stable aggregates in soils. Journal of Soil Science 33(2):141–163. https://oi.1111/j.1365-2389.1982.tb01755.x.
    OpenUrlCrossRefGeoRefWeb of Science
  59. ↵
    1. Tivet, F.,
    2. J.C.M. Sá,
    3. R. Lal,
    4. C. Briedis,
    5. P.R. Borszowskei,
    6. J.B. Santos,
    7. A. Farias,
    8. G. Eurich,
    9. D.C. Hartman,
    10. M. Nadolny Junior.,
    11. S. Bouzinac, and
    12. L. Séguy
    . 2013. Aggregate C depletion by plowing and its restoration by diverse biomass-C inputs under no-till in subtropical and tropical regions of Brazil. Soil and Tillage Research 126:203–218. https://doi.org/10.1016/j.still.2012.09.004.
    OpenUrl
  60. ↵
    1. Ventura, B.S.,
    2. A. Loss,
    3. L.D. Giumbelli,
    4. G.W. Ferreira,
    5. A.C. Bueno,
    6. C.R. Lourenzi,
    7. J.J. Comin, and
    8. G. Brunetto
    . 2018. Carbon, nitrogen and humic substances in biogenic and phisicogenic aggregates of a soil with a 10-year history of sucessive applications of swine waste. Tropical and Subtropical Agroecosystems 21(2):329–343.
    OpenUrl
  61. ↵
    1. G.A. Santos,
    2. L.S. Silva,
    3. L.P. Canellas, and
    4. F.A.O. Camargo
    1. Vezzani, F.M.,
    2. P.C. Conceição,
    3. N.A. Melo, and
    4. J. Dieckow
    . 2008. Matéria orgânica e a qualidade do solo. In Fundamentos da matéria orgânica no solo: Ecossistemas tropicais e subtropicais, 2nd edition, ed. G.A. Santos, L.S. Silva, L.P. Canellas, and F.A.O. Camargo. Porto Alegre: Metrópole.
  62. ↵
    1. Vezzani, F.M., and
    2. J. Mielniczuk
    . 2009. Uma visão sobre qualidade do solo. Revista Brasileira de Ciência do Solo 33(4):743–755. https://doi.org/10.1590/S0100-06832009000400001.
    OpenUrl
  63. ↵
    1. Wuddivira, M.N., and
    2. G. Camps-Roach
    . 2007. Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science 58(3):722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x.
    OpenUrl
  64. ↵
    1. Yoder, R.E.
    1936. A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses. Journal American Society of Agronomy 28(5):337–351. https://doi.org/10.2134/agronj1936.00021962002800050001x.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 76 (6)
Journal of Soil and Water Conservation
Vol. 76, Issue 6
November/December 2021
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
10 + 8 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer
A. Loss, B.S. Ventura, V. Müller, R. Gonzatto, L.F. Zin Battisti, M. Gonçalves Lintemani, M. Eduarda da Costa Erthal, R. Fagan Vidal, G. Scopel, C.R. Lourenzi, G. Brunetto, C. Marchezan, C.A. Ceretta, J.J. Comin
Journal of Soil and Water Conservation Nov 2021, 76 (6) 547-557; DOI: 10.2489/jswc.2021.00165

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Carbon, nitrogen, and aggregation index in Ultisol with 11 years of application of animal manures and mineral fertilizer
A. Loss, B.S. Ventura, V. Müller, R. Gonzatto, L.F. Zin Battisti, M. Gonçalves Lintemani, M. Eduarda da Costa Erthal, R. Fagan Vidal, G. Scopel, C.R. Lourenzi, G. Brunetto, C. Marchezan, C.A. Ceretta, J.J. Comin
Journal of Soil and Water Conservation Nov 2021, 76 (6) 547-557; DOI: 10.2489/jswc.2021.00165
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Capture of surface water runoff for irrigation of corn in western Illinois: Implications for nutrient loss reduction
Show more Research Section

Similar Articles

Keywords

  • cattle slurry
  • clay dispersion
  • geometric mean diameter
  • no-tillage system
  • pig deep litter
  • pig slurry

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society