Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleRESEARCH SECTION

Dynamics of dissolved reactive phosphorus loss from phosphorus source and sink soils in tile-drained systems

P. Welikhe, S.M. Brouder, J.J. Volenec, M. Gitau and R.F. Turco
Journal of Soil and Water Conservation January 2022, 77 (1) 1-14; DOI: https://doi.org/10.2489/jswc.2022.00012
P. Welikhe
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.M. Brouder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.J. Volenec
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Gitau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R.F. Turco
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Supplemental
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Baker, D.B.,
    2. L.T. Johnson,
    3. R.B. Confesor, and
    4. J.P. Crumrine
    . 2017. Vertical stratification of soil phosphorus as a concern for dissolved phosphorus runoff in the Lake Erie basin. Journal of Environmental Quality 46(6):1287–1295. https://doi.org/10.2134/jeq2016.09.0337.
    OpenUrl
  2. ↵
    1. Basu, N.B.,
    2. G. Destouni,
    3. J.W. Jawitz,
    4. S.E. Thompson,
    5. N.V. Loukinova,
    6. A. Darracq, and
    7. P.S.C. Rao
    . 2010. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. Geophysical Research Letters 37(23):1–5. https://doi.org/10.1029/2010GL045168.
    OpenUrlCrossRefWeb of Science
  3. ↵
    1. Basu, N.B.,
    2. S.E. Thompson, and
    3. P.S.C. Rao
    . 2011. Hydrologic and biogeochemical functioning of intensively managed catchments: A synthesis of top-down analyses. Water Resources Research 47(10):1–12. https://doi.org/10.1029/2011WR010800.
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Beauchemin, S.,
    2. R.R. Simard, and
    3. D. Cluis
    . 1998. Forms and concentration of phosphorus in drainage water of twenty-seven tile-drained soils. Journal of Environmental Quality 27(3):721–728. https://doi.org/10.2134/jeq1998.00472425002700030033x.
    OpenUrlGeoRefWeb of Science
  5. ↵
    1. Bende-Michl, U.,
    2. K. Verburg, and
    3. H.P. Cresswell
    . 2013. High-frequency nutrient monitoring to infer seasonal patterns in catchment source availability, mobilisation and delivery. Environmental Monitoring and Assessment 185(11):9191–9219. https://doi.org/10.1007/s10661-013-3246-8.
    OpenUrl
  6. ↵
    1. Bieroza, M.Z., and
    2. A.L. Heathwaite
    . 2015. Seasonal variation in phosphorus concentration-discharge hysteresis inferred from high-frequency in situ monitoring. Journal of Hydrology 524:333–347. https://doi.org/10.1016/j.jhydrol.2015.02.036.
    OpenUrlGeoRef
  7. ↵
    1. Bieroza, M.Z.,
    2. A.L. Heathwaite,
    3. M. Bechmann,
    4. K. Kyllmar, and
    5. P. Jordan
    . 2018. The concentration-discharge slope as a tool for water quality management. Science of the Total Environment 630:738–749. https://doi.org/10.1016/j.scitotenv.2018.02.256.
    OpenUrl
  8. ↵
    1. Bowes, M.J.,
    2. W.A. House,
    3. R.A. Hodgkinson, and
    4. D.V. Leach
    . 2005. Phosphorus-discharge hysteresis during storm events along a river catchment: The River Swale, UK. Water Research 39(5):751–762. https://doi.org/10.1016/j.watres.2004.11.027.
    OpenUrlPubMed
  9. ↵
    1. Bowes, M.J.,
    2. H.P. Jarvie,
    3. S.J. Halliday,
    4. R.A. Skeffington,
    5. A.J. Wade,
    6. M. Loewenthal, and
    7. E.J. Palmer-Felgate
    . 2015. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Science of the Total Environment 511:608–620. https://doi.org/10.1016/j.scitotenv.2014.12.086.
    OpenUrl
  10. ↵
    1. Butturini, A.,
    2. M. Alvarez,
    3. S. Bernał,
    4. E. Vazquez, and
    5. F. Sabater
    . 2008. Diversity and temporal sequences of forms of DOC and NO3– discharge responses in an intermittent stream: Predictable or random succession? Journal of Geophysical Research: Biogeosciences 113(3):1–10. https://doi.org/10.1029/2008JG000721.
    OpenUrl
  11. ↵
    1. Butturini, A.,
    2. G. Francesc,
    3. L. Jérôme,
    4. V. Eusebi, and
    5. S. Francesc
    . 2006. Cross-site comparison of variability of DOC and nitrate C-Q hysteresis during the autumn-winter period in three Mediterranean headwater streams: A synthetic approach. Biogeochemistry 77(3):327–349. https://doi.org/10.1007/s10533-005-0711-7.
    OpenUrl
  12. ↵
    1. Chanat, J.G.,
    2. K.C. Rice, and
    3. G.M. Hornberger
    . 2002. Consistency of patterns in concentration-discharge plots. Water Resources Research 38(8):22-1-22–10. https://doi.org/10.1029/2001wr000971.
    OpenUrl
  13. ↵
    1. Chardon, W.J.,
    2. J.E. Groenenberg,
    3. E.J.M. Temminghoff, and
    4. G.F. Koopmans
    . 2012. Use of reactive materials to bind phosphorus. Journal of Environmental Quality 41(3):636–646. https://doi.org/10.2134/jeq2011.0055.
    OpenUrlCrossRefPubMed
  14. ↵
    1. Chow, M.F.,
    2. J.C. Huang, and
    3. F.K. Shiah
    . 2017. Phosphorus dynamics along river continuum during typhoon storm events. Water (Switzerland) 9(7):1–15. https://doi.org/10.3390/w9070537.
    OpenUrl
  15. ↵
    1. Correll, D.L.
    1999. Phosphorus: A rate limiting nutrient in surface waters. Poultry Science 78(5):674–682. https://doi.org/10.1093/ps/78.5.674.
    OpenUrlCrossRefPubMed
  16. ↵
    1. Diamond, J.S.
    2013. Concentration-discharge relationships for streams and rivers in florida: Patterns and controls. Master’s thesis. University of Florida. https://ufdc.ufl.edu/UFE0045545/00001.
  17. ↵
    1. Djodjic, F.,
    2. L. Bergström, and
    3. B. Ulén
    . 2006. Phosphorus losses from a structured clay soil in relation to tillage practices. Soil Use and Management 18(2):79–83. https://doi.org/10.1111/j.1475-2743.2002.tb00223.x.
    OpenUrl
  18. ↵
    1. Djodjic, F.,
    2. L. Bergström,
    3. B. Ulén, and
    4. A. Shirmohammadi
    . 1999. Mode of transport of surface-applied phosphorus-33 through a clay and sandy soil. Journal of Environmental Quality 28(4):1273–1282. https://doi.org/10.2134/jeq1999.00472425002800040031x.
    OpenUrlGeoRefWeb of Science
  19. ↵
    1. Duncan, J.M.,
    2. L.E. Band, and
    3. P.M. Groffman
    . 2017a. Variable nitrate concentration-discharge relationships in a forested watershed. Hydrological Processes 31(9):1817–1824. https://doi.org/10.1002/hyp.11136.
    OpenUrl
  20. ↵
    1. Duncan, J.M.,
    2. C. Welty,
    3. J.T. Kemper,
    4. P.M. Groffman, and
    5. L.E. Band
    . 2017b. Dynamics of nitrate concentration-discharge patterns in an urban watershed. Water Resources Research 53(8):7349–7365. https://doi.org/10.1002/2017WR020500.
    OpenUrl
  21. ↵
    1. Egemose, S.,
    2. M.J. Sønderup,
    3. M.V. Beinthin,
    4. K. Reitzel,
    5. C.C. Hoffmann, and
    6. M.R. Flindt
    . 2012. Crushed concrete as a phosphate binding material: A potential new management tool. Journal of Environmental Quality 41(3):647–653. https://doi.org/10.2134/jeq2011.0134.
    OpenUrlPubMed
  22. ↵
    1. Gelbrecht, J.,
    2. H. Lengsfeld,
    3. R. Pöthig, and
    4. D. Opitz
    . 2005. Temporal and spatial variation of phosphorus input, retention and loss in a small catchment of NE Germany. Journal of Hydrology 304(1–4):151–165. https://doi.org/10.1016/j.jhydrol.2004.07.028.
    OpenUrlCrossRefGeoRef
  23. ↵
    1. Gentry, L.E.,
    2. M.B. David,
    3. T.V. Royer,
    4. C.A. Mitchell, and
    5. K.M. Starks
    . 2007. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. Journal of Environment Quality 36(2):408. https://doi.org/10.2134/jeq2006.0098.
    OpenUrl
  24. ↵
    1. Gentry, L.E.,
    2. M.B. David,
    3. K.M. Smith-Starks, and
    4. D.A. Kovacic
    . 2000. Nitrogen fertilizer and herbicide transport from tile drained fields. Journal of Environmental Quality 29(1):232–240. https://doi.org/10.2134/jeq2000.00472425002900010030x.
    OpenUrlWeb of Science
  25. ↵
    1. Godsey, S.E.,
    2. J.W. Kirchner, and
    3. D.W. Clow
    . 2009. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes 2309(May):2300–2309. https://doi.org/10.1002/hyp.
    OpenUrl
  26. ↵
    1. Greve, A.K.,
    2. M.S. Andersen, and
    3. R.I. Acworth
    . 2012. Monitoring the transition from preferential to matrix flow in cracking clay soil through changes in electrical anisotropy. Geoderma 179–180:46–52. https://doi.org/10.1016/j.geoderma.2012.02.003.
    OpenUrl
  27. ↵
    1. Hernandez-Ramirez, G.,
    2. S.M. Brouder,
    3. M.D. Ruark, and
    4. R.F. Turco
    . 2011. Nitrate, phosphate, and ammonium loads at subsurface drains: Agroecosystems and nitrogen management. Journal of Environmental Quality 40(4):1229–1240. https://doi.org/10.2134/jeq2010.0195.
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Hoagland, B.,
    2. T.A. Russo,
    3. X. Gu,
    4. L. Hill,
    5. J. Kaye,
    6. B. Forsythe, and
    7. S.L. Brantley
    . 2017. Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone Stream. Water Resources Research 53:4643–4667. https://doi.org/10.1002/2016WR019717.
    OpenUrl
  29. ↵
    1. Jarvis, N.J.
    2007. A review of non-equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science 58(3):523–546. https://doi.org/10.1111/j.1365-2389.2007.00915.x.
    OpenUrlCrossRef
  30. ↵
    1. Johnson, N.M.,
    2. G.E. Likens,
    3. F.H. Bormann,
    4. D. Fisher,
    5. D.W. Fisher, and
    6. R.S. Pierce
    . 1969. A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Water Resources Research 5(6):1353–1363. https://doi.org/10.1029/WR005i006p01353.
    OpenUrlWeb of Science
  31. ↵
    1. King, K.W.,
    2. N.R. Fausey, and
    3. M.R. Williams
    . 2014. Effect of subsurface drainage on streamflow in an agricultural headwater watershed. Journal of Hydrology 519(PA):438–445. https://doi.org/10.1016/j.jhydrol.2014.07.035.
    OpenUrlCrossRefGeoRef
  32. ↵
    1. King, K.W.,
    2. M.R. Williams, and
    3. N.R. Fausey
    . 2015. Contributions of systematic tile drainage to watershed-scale phosphorus transport. Journal of Environment Quality 44(2):486. https://doi.org/10.2134/jeq2014.04.0149.
    OpenUrl
  33. ↵
    1. Kinley, R.D.,
    2. R.J. Gordon,
    3. G.W. Stratton,
    4. G.T. Patterson, and
    5. J. Hoyle
    . 2007. Phosphorus losses through agricultural tile drainage in Nova Scotia, Canada. Journal of Environmental Quality 36(2):469–477. https://doi.org/10.2134/jeq2006.0138.
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. Kleinman, P.J.A.
    2017. The persistent environmental relevance of soil phosphorus sorption saturation. Current Pollution Reports 3(2):141–150. https://doi.org/10.1007/s40726-017-0058-4.
    OpenUrl
  35. ↵
    1. Kleinman, P.J.A.,
    2. R.M. Fanelli,
    3. R.M. Hirsch,
    4. A.R. Buda,
    5. Z.M. Easton,
    6. L.A. Wainger, and
    7. G.W. Shenk
    . 2019. Phosphorus and the Chesapeake Bay: Lingering issues and emerging concerns for agriculture. Journal of Environmental Quality 48(5):1191–1203. https://doi.org/10.2134/jeq2019.03.0112.
    OpenUrl
  36. ↵
    1. Lawler, D.M.,
    2. G.E. Petts,
    3. I.D.L. Foster, and
    4. S. Harper
    . 2006. Turbidity dynamics during spring storm events in an urban headwater river system: The Upper Tame, West Midlands, UK. The Science of the Total Environment 360(1–3):109–126. https://doi.org/10.1016/j.scitotenv.2005.08.032.
    OpenUrlCrossRefPubMed
  37. ↵
    1. Lloyd, C.E.M.,
    2. J.E. Freer,
    3. P.J. Johnes, and
    4. A.L. Collins
    . 2016a. Technical note: Testing an improved index for analysing storm discharge-concentration hysteresis. Hydrology and Earth System Sciences 20(2):625–632. https://doi.org/10.5194/hess-20-625-2016.
    OpenUrl
  38. ↵
    1. Lloyd, C.E.M.,
    2. J.E. Freer,
    3. P.J. Johnes, and
    4. A.L. Collins
    . 2016b. Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. The Science of the Total Environment 543:388–404. https://doi.org/10.1016/j.scitotenv.2015.11.028.
    OpenUrl
  39. ↵
    1. Macrae, M.L.,
    2. M.C. English,
    3. S.L. Schiff, and
    4. M. Stone
    . 2007. Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment. Agricultural Water Management 92(3):171–182. https://doi.org/10.1016/j.agwat.2007.05.015.
    OpenUrlCrossRef
  40. ↵
    1. Macrae, M.L.,
    2. M.C. English,
    3. S.L. Schiff, and
    4. M. Stone
    . 2010. Influence of antecedent hydrologic conditions on patterns of hydrochemical export from a first-order agricultural watershed in Southern Ontario, Canada. Journal of Hydrology 389(1–2):101–110. https://doi.org/10.1016/j.jhydrol.2010.05.034.
    OpenUrlGeoRef
  41. ↵
    1. Maher, K.
    2011. The role of fluid residence time and topographic scales in determining chemical fluxes from landscapes. Earth and Planetary Science Letters 312(1–2):48–58. https://doi.org/10.1016/j.epsl.2011.09.040.
    OpenUrlCrossRefGeoRefWeb of Science
  42. ↵
    1. McCollum, R.E.
    1991. Buildup and decline in soil phosphorus: 30-year trends on a Typic Umprabuult. Agronomy Journal 83(12563):77–85. https://doi.org/10.2134/agronj1991.00021962008300030011x.
    OpenUrlCrossRefWeb of Science
  43. ↵
    1. Menezes-Blackburn, D.,
    2. H. Zhang,
    3. M. Stutter,
    4. C.D. Giles,
    5. T. Darch,
    6. T.S. George, and
    7. P.M. Haygarth
    . 2016. A holistic approach to understanding the desorption of phosphorus in soils. Environmental Science and Technology 50(7):3371–3381. https://doi.org/10.1021/acs.est.5b05395.
    OpenUrl
  44. ↵
    1. Minaudo, C.,
    2. R. Dupas,
    3. C. Gascuel-Odoux,
    4. V. Roubeix,
    5. P.A. Danis, and
    6. F. Moatar
    . 2019. Seasonal and event-based concentration-discharge relationships to identify catchment controls on nutrient export regimes. Advances in Water Resources 131(July 2018):103379. https://doi.org/10.1016/j.advwatres.2019.103379.
    OpenUrl
  45. ↵
    1. Murphy, J., and,
    2. J.P. Riley
    . 1962. A modified single solution method for the determination of phosphate in natural waters. Analytical Chemistry ACTA 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5.
    OpenUrlCrossRef
  46. ↵
    1. Murphy, P.N.C., and
    2. R.J. Stevens
    . 2010. Lime and gypsum as source measures to decrease phosphorus loss from soils to water. Water, Air, and Soil Pollution 212(1–4):101–111. https://doi.org/10.1007/s11270-010-0325-0.
    OpenUrl
  47. ↵
    1. Nair, V.D.,
    2. M.W. Clark, and
    3. K.R. Reddy
    . 2015. Evaluation of legacy phosphorus storage and release from wetland soils. Journal of Environment Quality 44(6):1956. https://doi.org/10.2134/jeq2015.03.0154.
    OpenUrl
  48. ↵
    1. Nair, V.D., and
    2. W.G. Harris
    . 2014. Soil Phosphorus Storage Capacity for Environmental Risk Assessment. Advances in Agriculture (2014). http://dx.doi.org/10.1155/2014/723064.
  49. ↵
    1. R Core Team
    . 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/.
  50. ↵
    1. Radcliffe, D.E.,
    2. D.K. Reid,
    3. K. Blombäck,
    4. C.H. Bolster,
    5. A.S. Collick,
    6. Z.M. Easton, and
    7. D.R. Smith
    . 2015. Applicability of models to predict phosphorus losses in drained fields: A review. Journal of Environment Quality 44(2):614. https://doi.org/10.2134/jeq2014.05.0220.
    OpenUrl
  51. ↵
    1. Rose, L.A.,
    2. D.L. Karwan, and
    3. S.E. Godsey
    . 2018. Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrological Processes 32(18):2829–2844. https://doi.org/10.1002/hyp.13235.
    OpenUrl
  52. ↵
    1. Ruark, M.D.,
    2. S.M. Brouder, and
    3. R.F. Turco
    . 2009. Dissolved organic carbon losses from tile drained agroecosystems. Journal of Environment Quality 38(3):1205. https://doi.org/10.2134/jeq2008.0121.
    OpenUrl
  53. ↵
    1. Ruark, M.,
    2. A. Madison,
    3. F. Madison,
    4. E. Cooley,
    5. D. Frame,
    6. T. Stuntebeck, and
    7. M. Komiskey
    . 2012. Phosphorus loss from tile drains: Should we be concerned? Madison, WI: University of Wisconsin. http://fyi.uwex.edu/drainage/files/2015/09/P-Loss-from-Tile-Drains-ppt.pdf.
  54. ↵
    1. Schärer, M.,
    2. C. Stamm,
    3. T. Vollmer,
    4. E. Frossard,
    5. A. Oberson,
    6. H. Flühler, and
    7. S. Sinaj
    . 2007. Reducing phosphorus losses from over-fertilized grassland soils proves difficult in the short term. Soil Use and Management 23(SUPPL. 1):154–164. https://doi.org/10.1111/j.1475-2743.2007.00114.x.
    OpenUrlCrossRef
  55. ↵
    1. Schilling, K.E., and
    2. M. Helmers
    . 2008. Tile drainage as karst: Conduit flow and diffuse flow in a tile drained watershed. Journal of Hydrology 349:291–30. https://doi.org/doi:10.1016/j.jhydrol.2007.11.014.
    OpenUrlGeoRef
  56. ↵
    1. SEAL Analytical
    . 2004. O-Phosphate—P in drinking, saline and surface waters, and domestic and industrial wastes. AQ2 method EPA-118-A Rev. 5. Mequon, WI: SEAL Analytical, Mequon Technology Center.
  57. ↵
    1. Sharpley, A.N.,
    2. T. Daniel,
    3. T. Sims,
    4. J. Lemunyon,
    5. R. Stevens, and
    6. R. Parry
    . 2003. Agricultural Phosphorus and Eutrophication, Second Edition. Washington, DC: USDA Agricultural Research Service.
  58. ↵
    1. H. Tunney,
    2. O.T. Carton,
    3. P.C. Brookes, and
    4. A.E. Johnston
    1. Sharpley, A.N., and
    2. S. Rekolainen
    . 1997. Phosphorus in agriculture and its environmental implications. In Phosphorus Loss from Soil to Water, ed. H. Tunney, O.T. Carton, P.C. Brookes, and A.E. Johnston, 1-54. Wallingford, UK: CAB International.
  59. ↵
    1. Sharpley, A.N.,
    2. J.T. Sims,
    3. K.R. Reddy,
    4. S.C. Chapra,
    5. T.C. Daniel, and
    6. R. Wedepohl
    . 1994. Managing agricultural phosphorus for protection of surface waters: Issues and options. Journal of Environment Quality 23(3):437. https://doi.org/10.2134/jeq1994.00472425002300030006x.
    OpenUrl
  60. ↵
    1. Simard, R.R.,
    2. S. Beauchemin, and
    3. P.M. Haygarth
    . 2000. Potential for preferential pathways of phosphorus transport. Journal of Environmental Quality 29(1):97–105. https://doi.org/10.2134/jeq2000.00472425002900010012x.
    OpenUrlWeb of Science
  61. ↵
    1. Sims, J.T.,
    2. R.R. Simard, and
    3. B.C. Joern
    . 1998. Phosphorus loss in agricultural drainage: Historical perspective and current research. Journal of Environment Quality 27(2):277. https://doi.org/10.2134/jeq1998.00472425002700020006x.
    OpenUrl
  62. ↵
    1. Stamm, C.,
    2. R. Sermet,
    3. J. Leuenberger,
    4. H. Wunderli,
    5. H. Wydler,
    6. H. Flühler, and
    7. M. Gehre
    . 2002. Multiple tracing of fast solute transport in a drained grassland soil. Geoderma 109(3–4):245–268. https://doi.org/10.1016/S0016-7061(02)00178-7.
    OpenUrlCrossRefGeoRefWeb of Science
  63. ↵
    1. Thompson, S.E.,
    2. N.B. Basu,
    3. J. Lascurain,
    4. A. Aubeneau, and
    5. P.S.C. Rao
    . 2011. Relative dominance of hydrologic versus biogeochemical factors on solute export across impact gradients. Water Resources Research 47(7):1–20. https://doi.org/10.1029/2010WR009605.
    OpenUrlCrossRefWeb of Science
  64. ↵
    1. Trybula, E.
    2012. Quantifying ecohydrologic impacts of perennial rhizomatous grasses on tile discharge: A plot level comparison of continuous corn, upland switchgrass, mixed prairie, and Miscanthus × giganteus. PhD dissertation, Purdue University. https://docs.lib.purdue.edu/dissertations/AAI1535171/.
  65. ↵
    1. USEPA (US Environmental Protection Agency)
    . 2002. EPA Water Quality Standards Handbook, (August), 2–3. Washington, DC: USEPA.
  66. ↵
    1. Uusitalo, R.,
    2. E. Turtola,
    3. T. Kauppila, and
    4. T. Lilja
    . 2001. Particulate phosphorus and sediment in surface runoff and drainflow from clayey soils. Journal of Environmental Quality 30(2):589–595. https://doi.org/10.2134/jeq2001.302589x.
    OpenUrlGeoRefWeb of Science
  67. ↵
    1. Vadas, P.A.,
    2. P.J.A. Kleinman,
    3. A.N. Sharpley, and
    4. B.L. Turner
    . 2005. Relating soil phosphorus to dissolved phosphorus in runoff: A single extraction coefficient for water quality modeling. Journal of Environmental Quality 34(2):572–580. https://doi.org/10.2134/jeq2005.0572.
    OpenUrlCrossRefPubMedWeb of Science
  68. ↵
    1. Vaughan, M.C.H.,
    2. W.B. Bowden,
    3. J.B. Shanley,
    4. A. Vermilyea,
    5. R. Sleeper,
    6. A.J. Gold,
    7. S.M. Pradhanang,
    8. S.P. Inamdar,
    9. D.F. Levia,
    10. A.S. Andres,
    11. F. Birgand, and
    12. A.W. Schroth
    . 2017. High-frequency dissolved organic carbon and nitrate measurements reveal differences in storm hysteresis and loading in relation to land cover and seasonality. Water Resources Research 5(3):2–2. https://doi.org/10.1111/j.1752-1688.1969.tb04897.x.
    OpenUrl
  69. ↵
    1. Verbree, D.A.,
    2. S.W. Duiker, and
    3. P.J.A. Kleinman
    . 2010. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure. Journal of Environmental Quality 39(5):1762–1770. https://doi.org/10.2134/jeq2010.0032.
    OpenUrlCrossRefPubMed
  70. ↵
    1. Vidon, P., and
    2. P.E. Cuadra
    . 2011. Phosphorus dynamics in tile-drain flow during storms in the US Midwest. Agricultural Water Management 98(4):532–540. https://doi.org/10.1016/j.agwat.2010.09.010.
    OpenUrlCrossRef
  71. ↵
    1. Wagner, L.E.,
    2. P. Vidon,
    3. L.P. Tedesco, and
    4. M. Gray
    . 2008. Stream nitrate and DOC dynamics during three spring storms across land uses in glaciated landscapes of the Midwest. Journal of Hydrology 362(3–4):177–190. https://doi.org/10.1016/j.jhydrol.2008.08.013.
    OpenUrlGeoRef
  72. ↵
    1. Welikhe, P.,
    2. S.M. Brouder,
    3. J.J. Volenec,
    4. M. Gitau, and
    5. R.F. Turco
    . 2020a. Development of phosphorus sorption capacity-based environmental indices for tile-drained systems. Journal of Environmental Quality 49(2):378-391. https://doi.org/10.1002/jeq2.20044.
    OpenUrl
  73. ↵
    1. Welikhe, P.,
    2. S.M. Brouder,
    3. J.J. Volenec,
    4. M. Gitau,
    5. R.F. Turco, and
    6. N.S. De Armond
    . 2020b. Tile discharge, dissolved reactive phosphorus concentrations and loads for the WQFS (Water year 2011 – 2013). West Lafeyette, IN: Purdue University Research Repository. doi:10.4231/BJHE-3239.
    OpenUrlCrossRef
  74. ↵
    1. Weng, L.,
    2. W.H. Van Riemsdijk, and
    3. T. Hiemstra
    . 2012. Factors controlling phosphate interaction with iron oxides. Journal of Environmental Quality 41(3):628–635. https://doi.org/10.2134/jeq2011.0250.
    OpenUrlPubMed
  75. ↵
    1. Williams, G.P.
    1989. Sediment concentration versus water discharge during single hydrologic events in rivers. Journal of Hydrology 111(1–4):89–106. https://doi.org/10.1016/0022-1694(89)90254-0.
    OpenUrlCrossRefGeoRef
  76. ↵
    1. Williams, M.R.,
    2. A.R. Buda,
    3. H.A. Elliott,
    4. J. Hamlett,
    5. E.W. Boyer, and
    6. J.P. Schmidt
    . 2014. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment. Journal of Hydrology 511:870–879. https://doi.org/10.1016/j.jhydrol.2014.02.033.
    OpenUrlGeoRef
  77. ↵
    1. Williams, M.R.,
    2. K.W. King,
    3. W.I. Ford,
    4. A.R. Buda, and
    5. C. Kennedy
    . 2016. Effect of tillage onmacropore flow and phosphorus transport to tile drains. Water Resources Research 52(4):2868–2882. https://doi.org/10.1002/2015WR017650.Received.
    OpenUrl
  78. ↵
    1. Williams, M.R.,
    2. S.J. Livingston,
    3. C.J. Penn,
    4. D.R. Smith,
    5. K.W. King, and
    6. C.H. Huang
    . 2018. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin. Journal of Hydrology 559:749–761. https://doi.org/10.1016/j.jhydrol.2018.02.079.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (1)
Journal of Soil and Water Conservation
Vol. 77, Issue 1
January/February 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dynamics of dissolved reactive phosphorus loss from phosphorus source and sink soils in tile-drained systems
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Dynamics of dissolved reactive phosphorus loss from phosphorus source and sink soils in tile-drained systems
P. Welikhe, S.M. Brouder, J.J. Volenec, M. Gitau, R.F. Turco
Journal of Soil and Water Conservation Jan 2022, 77 (1) 1-14; DOI: 10.2489/jswc.2022.00012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Dynamics of dissolved reactive phosphorus loss from phosphorus source and sink soils in tile-drained systems
P. Welikhe, S.M. Brouder, J.J. Volenec, M. Gitau, R.F. Turco
Journal of Soil and Water Conservation Jan 2022, 77 (1) 1-14; DOI: 10.2489/jswc.2022.00012
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Supplementary Material
    • Acknowledgements
    • References
  • Figures & Data
  • Supplemental
  • Info & Metrics
  • References
  • PDF

Related Articles

  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Capture of surface water runoff for irrigation of corn in western Illinois: Implications for nutrient loss reduction
Show more Research Section

Similar Articles

Keywords

  • concentration
  • discharge
  • hysteresis
  • phosphorus sink soils
  • phosphorus source soils
  • water quality

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society