Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleRESEARCH SECTION

Evaluating the impact of midwestern cropping systems on soil health and soil carbon dynamics

B.W. Dougherty, D.S. Andersen and M.J. Helmers
Journal of Soil and Water Conservation January 2022, 77 (1) 78-87; DOI: https://doi.org/10.2489/jswc.2022.00056
B.W. Dougherty
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D.S. Andersen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.J. Helmers
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Al-Shammary, A.A.G.,
    2. A.Z. Kouzani,
    3. A. Kaynak,
    4. S.Y. Khoo,
    5. M. Norton, and
    6. W. Gates
    . 2018. Soil bulk density estimation methods: A review. Pedosphere 28(4):581–596. doi:10.1016/S1002-0160(18)60034-7.
    OpenUrlCrossRef
  2. ↵
    1. Alvarez, R., and
    2. H.S. Steinbach
    . 2009. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil and Tillage Research 104(1):1–15.
    OpenUrl
  3. ↵
    1. Andrews, S.S.,
    2. D.L. Karlen, and
    3. C. Cambardella
    . 2004. The soil management assessment framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal 68(6):1945–1962.
    OpenUrlCrossRefWeb of Science
  4. ↵
    1. Andrews, S.S.,
    2. D.L. Karlen, and
    3. J.P. Mitchell
    . 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment 90(1):25–45.
    OpenUrl
  5. ↵
    1. Angers, D.A., and
    2. N.S. Eriksen-Hamel
    . 2008. Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Science Society of America Journal 72(5):1370–1374.
    OpenUrlCrossRefWeb of Science
  6. ↵
    1. Antoneli, V.,
    2. A.C. Mosele,
    3. J.A. Bednarz,
    4. M. Pulido-Fernández,
    5. J. Lozano-Parra,
    6. S.D. Keesstra, and
    7. J. Rodrigo-Comino
    . 2019. Effects of applying liquid swine manure on soil quality and yield production in tropical soybean crops (Paraná, Brazil). Sustainability 11(14):3898.
    OpenUrl
  7. ↵
    1. Baker, J.M.,
    2. T.E. Ochsner,
    3. R.T. Venterea, and
    4. T.J. Griffis
    . 2007. Tillage and soil carbon sequestration—What do we really know? Agriculture, Ecosystems & Environment 118(1–4):1–5.
    OpenUrl
  8. ↵
    1. Basche, A.D.,
    2. T.C. Kaspar,
    3. S.V. Archontoulis,
    4. D.B. Jaynes,
    5. T.J. Sauer,
    6. T.B. Parkin, and
    7. F.E. Miguez
    . 2016. Soil water improvements with the long-term use of a winter rye cover crop. Agricultural Water Management 172(2016):40–50.
    OpenUrl
  9. ↵
    1. Bronick, C.J., and
    2. R. Lal
    . 2005. Soil structure and management: A review. Geoderma 124(1–2):3–22.
    OpenUrlCrossRefGeoRefWeb of Science
  10. ↵
    1. Buyanovsky, G.A., and
    2. G.H. Wagner
    . 1998. Carbon cycling in cultivated land and its global significance. Global Change Biology 4(2):131–141.
    OpenUrlCrossRef
  11. ↵
    1. Cambardella, C.A., and
    2. E.T. Elliott
    . 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal 56(3):777–783.
    OpenUrlCrossRefWeb of Science
  12. ↵
    1. Cates, A.M.,
    2. G.R. Sanford,
    3. L.W. Good, and
    4. R.D. Jackson
    . 2018. What do we know about cover crop efficacy in the North Central United States? Journal of Soil and Water Conservation 73(6):153A-157A. https://doi.org/10.2489/jswc.73.6.153A.
    OpenUrlFREE Full Text
  13. ↵
    1. E.G. Gregorich and
    2. M.R. Carter
    1. Christensen, B.T., and
    2. A.E. Johnston
    . 1997. Soil organic matter and soil quality—Lessons learned from long-term experiments at Askov and Rothamsted. In Developments in Soil Science, Volume 25, ed. E.G. Gregorich and M.R. Carter, 399–430. Amsterdam: Elsevier.
    OpenUrl
  14. ↵
    1. Dixon, P.
    2016. Should blocks be fixed or random? Conference on Applied Statistics in Agriculture. doi:10.4148/2475-7772.1474.
    OpenUrlCrossRef
  15. ↵
    1. Doran, J.W.,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    , eds. 1994. Defining Soil Quality for a Sustainable Environment. Madison, WI: American Society of Agronomy. https://doi.org/10.2136/sssaspecpub35.c1.
  16. ↵
    1. Doran, J.W., and
    2. M.R. Zeiss
    . 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology 15(1):3–11.
    OpenUrlCrossRef
  17. ↵
    1. Dougherty, B.W.,
    2. C.H. Pederson,
    3. A.P. Mallarino,
    4. D.S. Andersen,
    5. M.L. Soupir,
    6. R.S. Kanwar, and
    7. M.J. Helmers
    . 2020. Midwestern cropping system effects on drainage water quality and crop yields. Journal of Environmental Quality 49(1):38–49.
    OpenUrl
  18. ↵
    1. Drinkwater, L.E.,
    2. C.A. Cambardella,
    3. J.D. Reeder, and
    4. C.W. Rice
    . 1996. Potentially mineralizable nitrogen as an indicator of biologically active soil nitrogen. In Methods for Assessing Soil Quality, 217–229. Madison, WI: Soil Science Society of America.
  19. ↵
    1. Fabrizzi, K.P.,
    2. F.O. García,
    3. J.L. Costa, and
    4. L.I. Picone
    . 2005. Soil water dynamics, physical properties and corn and wheat responses to minimum and no-tillage systems in the southern Pampas of Argentina. Soil and Tillage Research 81(1):57–69.
    OpenUrlCrossRef
  20. ↵
    1. Fageria, N.K.
    2002. Soil quality vs. environmentally-based agricultural management practices. Communications in Soil Science and Plant Analysis 33(13–14):2301–2329.
    OpenUrl
  21. ↵
    1. Iqbal, M.,
    2. H.M.V. Es,
    3. A.U. Hassan,
    4. R.R. Schindelbeck, and
    5. B.N. Moebius-Clune
    . 2014. Soil health indicators as affected by long-term application of farm manure and cropping patterns under semi-arid climates. International Journal of Agriculture and Biology 16(2).
  22. ↵
    1. Jansa, J.,
    2. A. Mozafar,
    3. G. Kuhn,
    4. T. Anken,
    5. R. Ruh,
    6. I.R. Sanders, and
    7. E. Frossard
    . 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications 13(4):1164–1176.
    OpenUrlCrossRefWeb of Science
  23. ↵
    1. Jokela, W.E.,
    2. J.H. Grabber,
    3. D.L. Karlen,
    4. T.C. Balser, and
    5. D.E. Palmquist
    . 2009. Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agronomy Journal 101(4):727–737.
    OpenUrlCrossRef
  24. ↵
    1. Kanwar, R.S.,
    2. T.S. Colvin, and
    3. D.L. Karlen
    . 1997. Ridge, moldboard, chisel, and no-till effects on tile water quality beneath two cropping systems. Journal of Production Agriculture 10(2):227–234.
    OpenUrl
  25. ↵
    1. Karlen, D.,
    2. S. Andrews,
    3. B.J. Wienhold, and
    4. T. Zobeck
    . 2008. Soil quality assessment: Past, present and future. Journal of Integrative Biosciences 6(1):3–14.
    OpenUrl
  26. ↵
    1. Karlen, D.L.,
    2. S.J. Birell, and
    3. J.R. Hess
    . 2011. A five-year assessment of corn stover harvest in central Iowa, USA. Soil and Tillage Research 115–116(October 1, 2011):47–55.
    OpenUrl
    1. Karlen, D.L.,
    2. C.A. Cambardella,
    3. J.L. Kovar, and
    4. T.S. Colvin
    . 2013. Soil quality response to long-term tillage and crop rotation practices. Soil and Tillage Research 133(Supplement C):54–64.
    OpenUrl
  27. ↵
    1. Kibblewhite, M.G.,
    2. K. Ritz, and
    3. M.J. Swift
    . 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1492):685–701.
    OpenUrlCrossRefPubMed
  28. ↵
    1. Lal, R.
    2004. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22.
    OpenUrlCrossRefGeoRefWeb of Science
  29. ↵
    1. Lal, R.,
    2. R.F. Follett,
    3. B.A. Stewart, and
    4. J.M. Kimble
    . 2007. Soil carbon sequestration to mitigate climate change and advance food security. Soil Science 172(12):943–956.
    OpenUrlCrossRef
  30. ↵
    1. Lehman, R.M., and
    2. S.L. Osborne
    . 2016. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system. Bioenergy Research 9(4):1101–1108.
    OpenUrl
  31. ↵
    1. Liang, C.,
    2. W. Amelung,
    3. J. Lehmann, and
    4. M. Kästner
    . 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25(11):3578–3590.
    OpenUrl
  32. ↵
    1. Liu, A.,
    2. B.L. Ma, and
    3. A.A. Bomke
    . 2005. Effects of cover crops on soil aggregate stability, total organic carbon, and polysaccharides. Soil Science Society of America Journal 69(6):2041.
    OpenUrlCrossRefWeb of Science
  33. ↵
    1. Luo, Z.,
    2. E. Wang, and
    3. O.J. Sun
    . 2010. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment 139(1–2):224–231.
    OpenUrl
  34. ↵
    1. Mahboubi, A.A.,
    2. R. Lal, and
    3. N.R. Faussey
    . 1993. Twenty-eight years of tillage effects on two soils in Ohio. Soil Science Society of America Journal 57(2):506–512.
    OpenUrlWeb of Science
  35. ↵
    1. Maillard, É., and
    2. D.A. Angers
    . 2014. Animal manure application and soil organic carbon stocks: A meta-analysis. Global Change Biology 20(2):666–679.
    OpenUrl
  36. ↵
    1. Martí, M., and
    2. E. Martí
    . 2016. Long-term amendment of soils with compost and pig manure: Effects on soil function, production and health risk assessment. Acta Horticulturae 1146(1146):199–212.
    OpenUrl
  37. ↵
    1. Mikha, M.M., and
    2. C.W. Rice
    . 2004. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen. Soil Science Society of America Journal 68(3):809–816.
    OpenUrlWeb of Science
  38. ↵
    1. Moebius-Clune, B.N.,
    2. D.J. Moebius-Clune,
    3. B.K. Gugino,
    4. O.J. Idowo,
    5. R.R. Schindelbeck,
    6. A.J. Ristow,
    7. H.M. van Es,
    8. J.E. Thies,
    9. A. Shayler,
    10. M.B. McBride,
    11. D.W. Wolfe, and
    12. G.S. Abawi
    . 2016. Comprehensive assessment of soil health: The Cornell framework manual. 3.1. Geneva, NY: Cornell University.
  39. ↵
    1. National Research Council
    . 1993. Soil and Water Quality: An Agenda for Agriculture. Washington, DC: National Academy Press.
  40. ↵
    1. Nimmo, J.R., and
    2. K.S. Perkins
    . 2002. Aggregate stability and size distribution. In Methods of Soil Analysis Part 4: Physical Methods, 317–328. Madison, WI: Soil Science Society of America.
  41. ↵
    1. Nunes, M.R.,
    2. H.M. van Es,
    3. R. Schindelbeck,
    4. A.J. Ristow, and
    5. M. Ryan
    . 2018. No-till and cropping system diversification improve soil health and crop yield. Geoderma 328(October 15, 2018):30–43.
    OpenUrl
  42. ↵
    1. Ordóñez, R.A.,
    2. M.J. Castellano,
    3. J.L. Hatfield,
    4. M.J. Helmers,
    5. M.A. Licht,
    6. M. Liebman,
    7. R. Dietzel,
    8. R. Martinez-Feria,
    9. J. Iqbal,
    10. L.A. Puntel,
    11. S.C. Córdova,
    12. K. Togliatti,
    13. E.E. Wright, and
    14. S.V. Archontoulis
    . 2018. Maize and soybean root front velocity and maximum depth in Iowa, USA. Field Crops Research 215(2018):122–131.
    OpenUrl
  43. ↵
    1. Paustian, K.,
    2. J. Lehmann,
    3. S. Ogle,
    4. D. Reay,
    5. G.P. Robertson, and
    6. P. Smith
    . 2016. Climate-smart soils. Nature 532(7597):49–57.
    OpenUrlCrossRefGeoRefPubMed
  44. ↵
    1. Poeplau, C., and
    2. A. Don
    . 2015. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agriculture, Ecosystems & Environment 200(2015):33–41.
    OpenUrl
  45. ↵
    1. Powlson, D.S.,
    2. C.M. Stirling,
    3. M.L. Jat,
    4. B.G. Gerard,
    5. C.A. Palm,
    6. P.A. Sanchez, and
    7. K.G. Cassman
    . 2014. Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change 4(8):678–683.
    OpenUrl
  46. ↵
    1. Radke, J.K.,
    2. R.W. Andrews,
    3. R.R. Janke, and
    4. S.E. Peters
    . 1988. Low input cropping systems and efficiency of water and nitrogen use. In Cropping Strategies for Efficient Use of Water and Nitrogen, 193–218. Madison, WI: American Society of Agronomy-Crop Science Society of America -Soil Science Society of America.
  47. ↵
    1. Rorick, J.D., and
    2. E.J. Kladivko
    . 2017. Cereal rye cover crop effects on soil carbon and physical properties in southeastern Indiana. Journal of Soil and Water Conservation 72(3):260–265. https://doi.org/10.2489/jswc.72.3.260.
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Sainju, U.M., and
    2. B.P. Singh
    . 1997. Winter cover crops for sustainable agricultural systems: Influence on soil properties, water quality, and crop yields. HortScience 32(1):21–28.
    OpenUrlFREE Full Text
  49. ↵
    1. Sanderman, J., and
    2. J.A. Baldock
    . 2010. Accounting for soil carbon sequestration in national inventories: A soil scientist’s perspective. Environmental Research Letters 5(3).
  50. ↵
    1. Sanford, G.R.,
    2. J.L. Posner,
    3. R.D. Jackson,
    4. C.J. Kucharik,
    5. J.L. Hedtcke, and
    6. T.-L. Lin
    . 2012. Soil carbon lost from Mollisols of the North Central U.S.A. with 20 years of agricultural best management practices. Agriculture, Ecosystems & Environment 162(November 2012):68–76.
    OpenUrl
  51. ↵
    1. SAS Institute
    . 2015. SAS analytics software and solutions. The SAS system for Windows. Cary, NC: SAS Institute.
  52. ↵
    1. Saxton, K.E., and
    2. W.J. Rawls
    . 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70(5):1569–1578.
    OpenUrlCrossRefWeb of Science
  53. ↵
    1. Schmidt, R.,
    2. K. Gravuer,
    3. A.V. Bossange,
    4. J. Mitchell, and
    5. K. Scow
    . 2018. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE 13(2):e0192953.
    OpenUrl
  54. ↵
    1. Six, J.,
    2. E.T. Elliott,
    3. K. Paustian, and
    4. J.W. Doran
    . 1998. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal 62(5):1367–1377.
    OpenUrlCrossRefGeoRefWeb of Science
  55. ↵
    1. Six, J.,
    2. K. Paustian,
    3. E.T. Elliott, and
    4. C. Combrink
    . 2000. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal 64(2): 681–688. doi:10.2136/sssaj2000.642681x.
    OpenUrlCrossRefGeoRefWeb of Science
  56. ↵
    1. Strudley, M.W.,
    2. T.R. Green, and
    3. J.C. Ascough
    . 2008. Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research 99(1):4–48.
    OpenUrlCrossRefWeb of Science
  57. ↵
    1. Tautges, N.E.,
    2. J.L. Chiartas,
    3. A.C.M. Gaudin,
    4. A.T. O’Geen,
    5. I. Herrera, and
    6. K.M. Scow
    . 2019. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration differ in surface and subsurface soils. Global Change Biology 25(11):3753–3766.
    OpenUrl
  58. ↵
    1. Toosi, E.R.,
    2. A.N. Kravchenko,
    3. J. Mao,
    4. M.Y. Quigley, and
    5. M.L. Rivers
    . 2017. Effects of management and pore characteristics on organic matter composition of macroaggregates: Evidence from characterization of organic matter and imaging. European Journal of Soil Science 68(2):200–211. doi:10.1111/ejss.12411.
    OpenUrlCrossRef
  59. ↵
    1. Van Oost, K.,
    2. G. Govers,
    3. S. de Alba, and
    4. T.A. Quine
    . 2006. Tillage erosion: A review of controlling factors and implications for soil quality. Progress in Physical Geography 30(4):443–466.
    OpenUrlCrossRefGeoRefWeb of Science
  60. ↵
    1. Veenstra, J.J., and
    2. C.L. Burras
    . 2015. Soil profile transformation after 50 years of agricultural land use. Soil Science Society of America Journal 79(4):1154–1162.
    OpenUrlGeoRef
  61. ↵
    1. Villamil, M.B.,
    2. G.A. Bollero,
    3. R.G. Darmody,
    4. F.W. Simmons, and
    5. D.G. Bullock
    . 2006. No-till corn/soybean systems including winter cover crops: Effects on soil properties. Soil Science Society of America Journal 70(6):1936.
    OpenUrlCrossRefWeb of Science
  62. ↵
    1. Virto, I.,
    2. P. Barré,
    3. A. Burlot, and
    4. C. Chenu
    . 2012. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems. Biogeochemistry 108(1–3):17–26.
    OpenUrlCrossRef
  63. ↵
    1. Vyn, T.J., and
    2. B.A. Raimbault
    . 1993. Long-term effect of five tillage systems on corn response and soil structure. Agronomy Journal 85(1993):1074–1079.
    OpenUrlWeb of Science
  64. ↵
    1. M. Begon and
    2. A.H. Fitter
    1. Wardle, D.A.
    1995. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. In Advances in Ecological Research, ed. M. Begon and A.H. Fitter, 105–185. Cambridge, MA: Academic Press.
  65. ↵
    1. West, T.O., and
    2. W.M. Post
    . 2002. Soil organic carbon sequestration by tillage and crop rotation: A global data analysis. Soil Science Society of America Journal 66:1930-1946.
    OpenUrlCrossRefWeb of Science
  66. ↵
    1. Wienhold, B.J.,
    2. J.I. Pikul,
    3. M.A. Liebig,
    4. M.M. Mikha,
    5. G.E. Varvel,
    6. J.W. Doran, and
    7. S.S. Andrews
    . 2006. Cropping system effects on soil quality in the Great Plains: Synthesis from a regional project. Renewable Agriculture and Food Systems 21(1):49–59.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (1)
Journal of Soil and Water Conservation
Vol. 77, Issue 1
January/February 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Evaluating the impact of midwestern cropping systems on soil health and soil carbon dynamics
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
4 + 0 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Evaluating the impact of midwestern cropping systems on soil health and soil carbon dynamics
B.W. Dougherty, D.S. Andersen, M.J. Helmers
Journal of Soil and Water Conservation Jan 2022, 77 (1) 78-87; DOI: 10.2489/jswc.2022.00056

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Evaluating the impact of midwestern cropping systems on soil health and soil carbon dynamics
B.W. Dougherty, D.S. Andersen, M.J. Helmers
Journal of Soil and Water Conservation Jan 2022, 77 (1) 78-87; DOI: 10.2489/jswc.2022.00056
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Phytoremediation and high rainfall combine to improve soil and plant health in a North America Northern Great Plains saline sodic soil
  • Combining a saltation impact sensor and a wind tunnel to explore wind erosion processes–A case study in the Zhundong mining area, Xinjiang, China
  • Cover crops may exacerbate moisture limitations on South Texas dryland farms
Show more Research Section

Similar Articles

Keywords

  • bulk density
  • no-till
  • soil carbon
  • soil health
  • water-stable aggregates

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2022 Soil and Water Conservation Society