Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Call for Research Editor
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
EditorialRESEARCH EDITORIAL

Soil health: Meaning, measurement, and value through a critical zone lens

D.C. Yoder, S. Jagadamma, S. Singh, A. Nouri, S. Xu, D. Saha, S.M. Schaeffer, N. Adotey, F.R. Walker, J. Lee and M. Budipradigdo
Journal of Soil and Water Conservation January 2022, 77 (1) 88-99; DOI: https://doi.org/10.2489/jswc.2022.00042
D.C. Yoder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Jagadamma
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Singh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Nouri
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S. Xu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. Saha
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.M. Schaeffer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. Adotey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F.R. Walker
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. Lee
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M. Budipradigdo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Addiscott, T.M.
    1995. Entropy and sustainability. European Journal of Soil Science 46:161-168.
    OpenUrl
  2. ↵
    1. Alburquerque, J.A.,
    2. C. De la Fuente,
    3. M. Campoy,
    4. L. Carrasco,
    5. I. Nájera,
    6. C. Baixauli,
    7. F. Caravaca,
    8. A. Roldán,
    9. J. Cegarra, and
    10. M.P. Bernal
    . 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. European Journal of Agronomy 43:119–128. https://doi.org/10.1016/j.eja.2012.06.001.
    OpenUrl
  3. ↵
    1. Allan, E.,
    2. P. Manning,
    3. F. Alt,
    4. J. Binkenstein,
    5. S. Blaser,
    6. N. Bluthgen,
    7. S. Bohm,
    8. F. Grassein,
    9. N. Holzel,
    10. V.H. Klaus,
    11. T. Kleinebecker,
    12. E.K. Morris,
    13. Y. Oelmann,
    14. D. Prati,
    15. S.C. Renner,
    16. M.C. Rillig,
    17. M. Schaefer,
    18. M. Schloter,
    19. B. Schmitt,
    20. I. Schoning,
    21. M. Schrunpf,
    22. E. Solly,
    23. E. Sorkau,
    24. J. Steckel,
    25. I. Steffen-Dewenter,
    26. B. Stempfhuber,
    27. M. Tschapka,
    28. C.N. Weiner,
    29. W.W. Weisser,
    30. M. Werner,
    31. C. Westphal,
    32. W. Wilcke, and
    33. M. Fischer
    . 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters 18:834–843. doi:10.1111/ele.12469.
    OpenUrlCrossRefPubMed
  4. ↵
    1. Andreasen, J.K.,
    2. R.V. O’Neill,
    3. R. Noss, and
    4. N.C. Slosser
    . 2001. Considerations for the development of a terrestrial index of ecological integrity. Ecological Indications 1:21–35.
    OpenUrl
  5. ↵
    1. Andrews, S.S., and
    2. C.R. Carroll
    . 2001. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications 11(6):1573–1585.
    OpenUrl
  6. ↵
    1. Andrews, S.S.,
    2. D.L. Karlen, and
    3. C.A. Cambardella
    . 2004. The Soil Management Assessment Framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal 68(6):1945–1962.
    OpenUrlCrossRefWeb of Science
  7. ↵
    1. Askari, M.S., and
    2. N.M. Holden
    . 2015. Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research 150:57–67. http://dx.doi.org/10.1016/j.still.2015.01.010.
    OpenUrl
  8. ↵
    1. Baveye, P.C.
    2020. Bypass and hyperbole in soil research: Worrisome practices critically reviewed through examples. European Journal of Soil Science 2020:1–20. DOI:10.1111/ejss.12941.
    OpenUrlCrossRef
  9. ↵
    1. Baveye, P.C.,
    2. J. Baveye, and
    3. J. Gowdy
    . 2016. Soil “ecosystem” services and natural capital: Critical appraisal of research on uncertain ground. Frontiers in Environmental Science 4:41. doi:10.3389/fenvs.2016.00041.
    OpenUrlCrossRef
  10. ↵
    1. Baveye, P.C., and
    2. M. Laba
    . 2015. Moving away from the geospatial lamppost: Why, where, and how does the spatial heterogeneity of soils matter? Ecological Modelling 298:24–38. http://dx.doi.org/10.1016/j.ecolmodel.2014.03.018.
    OpenUrl
  11. ↵
    1. Birri, R.
    2020. Assessing the efficacy of enzyme assays as a soil health indicator on diverse, long-term, agronomic plots. Honors research thesis, The Ohio State University. https://kb.osu.edu/handle/1811/91653.
  12. ↵
    1. Blum, W.E.H.
    2005. Functions of soil for society and the environment. Reviews in Environmental Science and Bio/Technology 4:75–19. DOI:10.1007/s11157-005-2236-x.
    OpenUrlCrossRef
  13. ↵
    1. Bone, J.,
    2. D. Barraclough,
    3. P. Eggleton,
    4. M. Head,
    5. D.T. Jones, and
    6. N. Voulvoulis
    . 2014. Prioritising soil quality assessment through the screening of sites: The use of publicly collected data. Land Degradation and Development 25:251–266. DOI:10.1002/ldr.2138.
    OpenUrlCrossRef
  14. ↵
    1. Bone, J.,
    2. M. Head,
    3. D. Barraclough,
    4. M. Archer,
    5. C. Scheib,
    6. D. Flight, and
    7. N. Voulvoulis
    . 2010. Soil quality assessment under emerging regulatory requirements. Environment International 36:609–622.
    OpenUrlPubMed
  15. ↵
    1. Bouma, J.
    2002 Land quality indicators of sustainable land management across scales. Agriculture Ecosystems and Environment 88:129–136.
    OpenUrl
  16. ↵
    1. Brantley, S.L.,
    2. J.P. Megonigal,
    3. F.N. Scatena,
    4. Z.B. Brunstad,
    5. R.T. Barnes,
    6. M.A. Bruns,
    7. P. Van Cappellen,
    8. K. Donstova,
    9. H.E. Hartnett,
    10. A.S. Hartshorn,
    11. A. Heimsath,
    12. E. Herndon,
    13. L. Jin,
    14. C.K. Keller,
    15. J.R. Leake,
    16. W.H. McDowell,
    17. F.C. Meinzer,
    18. T.J. Mozdzer,
    19. S. Petsch,
    20. J. Pett-Ridge,
    21. K.S. Pregitzer,
    22. P.A. Raymond,
    23. C.S. Riebe,
    24. K.L. Shumaker,
    25. A. Sutton-Grier,
    26. R. Walter, and
    27. K. Yoo
    . 2011. Twelve testable hypotheses on the geobiology of weathering. Geobiology 9:140–165. DOI:10.1111/j.1472-4669.2010.00264.x.
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Brooks, P.D.,
    2. J. Chorover,
    3. Y. Fan,
    4. S.E. Godsey,
    5. R.M. Maxwell,
    6. J.P. McNamara, and
    7. C. Tague
    . 2015. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research 51:6973–6987. doi:10.1002/2015WR017039.
    OpenUrlCrossRef
  18. ↵
    1. Bunemann, E.K.,
    2. G. Bongiorno,
    3. Z. Bai,
    4. R.E. Creamer,
    5. G.D. De Deyn,
    6. R. de Goede,
    7. L. Fleskens,
    8. V. Geissen,
    9. T.W. Kuyper,
    10. P. Mader,
    11. M. Pulleman,
    12. W. Sukkel,
    13. J.W. van Groenigen, and
    14. L. Brussaard
    . 2018. Soil quality—A critical review. Soil Biology and Biochemistry 120:105–125. https://doi.org/10.1016/j.soilbio.2018.01.030.
    OpenUrl
  19. ↵
    1. Cardoso, E.J.B.N.,
    2. R.L.F. Vascomcellos,
    3. D. Bini,
    4. M.Y.H. Miyauchi,
    5. C.A. dos Santos,
    6. P.R.L. Alves,
    7. A.M. de Paula,
    8. A.S. Naktani,
    9. J.M. Pereora, and
    10. M.A. Noguira
    . 2013. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola 70(4):274–289.
    OpenUrl
  20. ↵
    1. Chorover, J.,
    2. L.A. Derry, and
    3. W.H. McDowell
    . 2017. Concentration-discharge relations in the critical zone: Implications for resolving critical zone structure, function, and evolution. Water Resources Research 53:8654–8659. doi.org/10.1002/2017WR021111.
    OpenUrl
  21. ↵
    1. Chorover, J.,
    2. R. Kretzschmar,
    3. F. Gerran-Pichle, and
    4. D.L. Sparks
    . 2007. Soil biogeochemical processes within the critical zone. Elements 3(5):321–326. https://doi.org/10.2113/gselements.3.5.321.
    OpenUrlAbstract/FREE Full Text
  22. ↵
    1. Chu, M.,
    2. S. Singh,
    3. F.R. Walker,
    4. N.S. Eash,
    5. M.J. Buschermohle,
    6. L.A. Duncan, and
    7. S. Jagadamma
    . 2019. Soil health and soil fertility assessment by the Haney soil health test in an agricultural soil in west Tennessee. Communications in Soil Science and Plant Analysis 50:1–9. https://doi.org/10.1080/00103624.2019.1604731.
    OpenUrl
  23. ↵
    1. Creamer, R., and
    2. N. Holden
    . 2010. Guest Editorial for Soil Quality Special Issue. Soil Use and Management 26:197. doi:10.1111/j.1475-2743.2010.00299.x.
    OpenUrlCrossRef
    1. De, M.,
    2. J.A. Riopel,
    3. L.J. Cihacek,
    4. M. Lawrinenko,
    5. R. Baldwin-Kordick,
    6. S.J. Hall, and
    7. M.D. McDaniel
    . 2020. Soil health recovery after grassland reestablishment on cropland: The effects of time and topographic position. Soil Science Society of America Journal 84:568–586. DOI:10.1002/saj2.20007.
    OpenUrlCrossRef
  24. ↵
    1. de Paul Obade, V., and
    2. R. Lal
    . 2016. Towards a standard technique for soil quality assessment. Geoderma 265:96–102. http://dx.doi.org/10.1016/j.geoderma.2015.11.023.
    OpenUrl
  25. ↵
    1. Dick, R.
    2018. Soil Health. The theory of everything (terrestrial) or just another buzzword. CSA News, November 2018. doi:10.2134/csa2018.63.1114.
    OpenUrlCrossRef
  26. ↵
    1. Doering, O., and
    2. K.R. Smith
    . 2010. Examining the Relationship of Conservation Compliance and Farm Program Incentives. Washington, DC: The Council on Food, Agricultural, and Resource Economics. https://ageconsearch.umn.edu/record/156624/files/Doering-Smith_Final.pdf.
  27. ↵
    1. Doran, J.W.
    2002. Soil health and global sustainability: Translating science into practice. Agriculture, Ecosystems and Environment 88:119–127.
    OpenUrlCrossRef
  28. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Doran, J.W., and
    2. T.B. Parkin
    . 1994. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 3–22. SSSA Special Publication No. 35. Madison, WI: Soil Science Society of America.
  29. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Doran, J.W., and
    2. T.B. Parkin
    . 1996. Quantitative indicators of soil quality: A minimum data set. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 25–34. SSSA Special Publication No. 49. Madison, WI: Soil Science Society of America.
  30. ↵
    1. Doran, J.W., and
    2. M.R. Zeiss
    . 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology 15:3–11.
    OpenUrlCrossRef
  31. ↵
    1. Doring, T.F.,
    2. A. Vieweger,
    3. M. Pautasso,
    4. M. Vaarst,
    5. M.R. FInckh, and
    6. M.S. Wolfe
    . 2014. Resilience as a universal criterion of health. Journal of Science in Food and Agriculture 95:455–465. DOI:10.1002/jsfa.6539.
    OpenUrlCrossRef
  32. ↵
    1. El Mujtar, V.,
    2. N. Munoz,
    3. B.P. McCormick,
    4. M. Pulleman, and
    5. P. Tittonell
    . 2019. Role and management of soil biodiversity for food security and nutrition: Where do we stand? Global Food Security 20:132–144. https://doi.org/10.1016/j.gfs.2019.01.007.
    OpenUrl
  33. ↵
    1. Fine, A.K.,
    2. H.M. van Es,
    3. H.M., and
    4. R.R. Schindelbeck
    . 2017. Statistics, scoring functions, and regional analysis of a comprehensive soil health database. Soil Science Society of America Journal 81:589–601. doi:10.2136/sssaj2016.09.0286.
    OpenUrlCrossRef
  34. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Garlynd, M.J.,
    2. D.E. Romig,
    3. R.F. Harris, and
    4. A.V. Kurakov
    . 1994. Descriptive and analytical characterization of soil quality/health. In Defining Soil Quality for a Sustainable Environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 159–168. SSSA Special Publication No. 35. Madison, WI: Soil Science Society of America.
  35. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Gomez, A.A.,
    2. D.E.S. Kelly,
    3. J.K. Syers, and
    4. K.J. Coughlin
    . 1996. Measuring sustainability of agricultural systems at the farm level. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 401–410. SSSA Special Publication No. 49. Madison, WI: Soil Science Society of America.
  36. ↵
    1. Grossman, R.B.,
    2. D.S. Harms,
    3. C.A. Seybold, and
    4. J.E. Herrick
    . 2001. Coupling use-dependent and use-invariant data for soil quality evaluation in the United States. Journal of Soil and Water Conservation 56(1):63–68.
    OpenUrlAbstract/FREE Full Text
  37. ↵
    1. Guo, L., and
    2. H. Lin
    . 2016. Critical zone research and observatories: Current status and future perspectives. Vadose Zone Journal 15(9). doi:10.2136/vzj2016.06.0050.oi:10.2136/vzj2016.06.0050oi:10.2136/vzj2016.06.0050
    OpenUrlCrossRef
  38. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Harris, R.F., and
    2. D.F. Bezdicek
    . 1994. Descriptive aspects of soil quality/health. In Defining Soil Quality for a Sustainable Environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 23–36. SSSA Special Publication No. 35. Madison, WI: Soil Science Society of America.
  39. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Harris, R.F.,
    2. D.L. Karlen, and
    3. D.J. Mulla
    . 1996. A conceptual framework for assessment and management of soil health. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 61–82. SSSA Special Publication No. 49. Madison, WI: Soil Science Society of America.
  40. ↵
    1. Herrick, J.E.
    2000. Soil quality: An indicator of sustainable land management? Applied Soil Ecology 15:75–83.
    OpenUrl
  41. ↵
    1. Huddleston, J.H.
    1984. Development and use of soil productivity ratings in the United States. Geoderma 32:297–317.
    OpenUrlGeoRef
  42. ↵
    1. Janzen, H.H.,
    2. D.W. Janzen, and
    3. E.G. Gregorich
    . 2021. The ‘soil health’ metaphor: Illuminating or illusory? Soil Biology and Biogeochemistry. https://doi.org/10.1016/j.soilbio.2021.108167.
  43. ↵
    1. Karlen, D.L.,
    2. S.S. Andrews, and
    3. J.W. Doran
    . 2001. Soil quality: Current concepts and applications. Advances in Agronomy 74:1–40.
    OpenUrl
  44. ↵
    1. Karlen, D.L.,
    2. S.S. Andrews,
    3. B.J. Weinhold, and
    4. J.W. Doran
    . 2003a. Soil quality: Humankind’s foundation for survival. Journal of Soil and Water Conservation 58(4):171–179.
    OpenUrlAbstract/FREE Full Text
  45. ↵
    1. Karlen, D.L.,
    2. C.A. Ditzler, and
    3. S.S. Andrews
    . 2003b. Soil quality: Why and how? Geoderma 114:145–156.
    OpenUrlCrossRefGeoRefWeb of Science
  46. ↵
    1. Karlen, D.L.,
    2. N.J. Goesner,
    3. K.S. Veum, and
    4. M.A. Yost
    . 2017. On-farm soil health evaluations: Challenges and opportunities. Journal of Soil and Water Conservation 72(2):26A–31A. https://doi.org/10.2489/jswc.72.2.26A.
    OpenUrlFREE Full Text
  47. ↵
    1. Karlen, D.L.,
    2. M.J. Mausbach,
    3. J.W. Doran,
    4. R.G. Cline,
    5. R.F. Harris, and
    6. G.E. Schuman
    . 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal 61:4–10.
    OpenUrlCrossRefWeb of Science
  48. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Karlen, D.L., and
    2. D.E. Stott
    . 1994. A framework for evaluating physical and chemical indicators of soil quality. In Defining Soil Quality for a Sustainable Environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 53–72. SSSA Special Publication No. 35. Madison, WI: Soil Science Society of America.
    1. Karlen, D.L.,
    2. K.S. Veum,
    3. K.A. Sudduth,
    4. J.F. Obrycki, and
    5. M.R. Nunes
    . 2019. Soil health assessment: Past accomplishments, current activities, and future opportunities. Soil and Tillage Research 195:104365. https://doi.org/10.1016/j.still.2019.104365.
    OpenUrl
  49. ↵
    1. Kibblewhite, M.G.,
    2. K. Ritz, and
    3. M.J. Swift
    . 2008. Soil health in agricultural systems. Philosophical Transactions of the Royal Society B 363:685–701. doi:10.1098/rstb.2007.2178.
    OpenUrlCrossRefPubMed
  50. ↵
    1. Lal, R.
    2016. Soil health and carbon management. Food and Energy Security 5(4):212–222. doi:10.1002/fes3.96.
    OpenUrlCrossRef
  51. ↵
    1. J.W. Doran,
    2. D.C. Coleman,
    3. D.F. Bezdicek, and
    4. B.A. Stewart
    1. Larson, W.E., and
    2. F.J. Pierce
    . 1994. The dynamics of soil quality as a measure of sustainable management. In Defining Soil Quality for a Sustainable Environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, 37–52. SSSA Special Publication No. 35. Madison, WI: Soil Science Society of America.
  52. ↵
    1. Lehmann, J.,
    2. D.A. Bossio,
    3. I. Kogel-Knabner, and
    4. M.C. Rilig
    . 2020. The concept and future prospects of soil health. Nature Reviews Earth and Environment. https://doi.org/10.1038/s43017-020-0080-8.
  53. ↵
    1. Letey, J.,
    2. R.E. Sojka,
    3. D.R. Upchurch,
    4. D.K. Cassel,
    5. K.R. Olson,
    6. W.A. Payne,
    7. S.E. Petrie,
    8. G.H. Price,
    9. R.J. Reginato,
    10. H.D. Scott,
    11. P.J. Smethurst, and
    12. G.B. Triplett
    . 2003. Deficiencies in the soil quality concept and its applications. Journal of Soil and Water Conservation 58(4):180–187.
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Li, L.,
    2. K. Maher,
    3. A. Navarre-Sitchler,
    4. J. Druhan,
    5. C. Meile,
    6. C. Lawrence,
    7. J. Moore,
    8. J. Perdrial,
    9. P. Sullivan,
    10. A. Thompson,
    11. L. Jin,
    12. E.W. Bolton,
    13. S.L. Brantley,
    14. W.E. Dietrich,
    15. K.U. Mayer,
    16. C.I. Steefel,
    17. A. Valocchi,
    18. J. Zachara,
    19. B. Kocar,
    20. J. Macintosh,
    21. B.M. Tutolo,
    22. M. Kumar,
    23. E. Sonnenthal,
    24. C. Bao, and
    25. J. Beisman
    . 2017. Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews 165:280–301. https://doi.org/10.1016/j.earscirev.2016.09.001.
    OpenUrlCrossRef
  55. ↵
    1. Liebig, M.A., and
    2. J.W. Doran
    . 1999. Evaluation of point-scale assessments of soil quality. Journal of Soil and Water Conservation 54(2):510–518.
    OpenUrlAbstract/FREE Full Text
  56. ↵
    1. Liebig, M.A.,
    2. G. Varvel, and
    3. J. Doran
    . 2001. A simple performance-based index for assessing multiple agroecosystem functions. Agronomy Journal 93:313–318.
    OpenUrl
  57. ↵
    1. Lin, H.,
    2. J.W. Hopmans, and
    3. D Richter
    . 2011. Interdisciplinary sciences in a global network of critical zone observatories. Vadose Zone Journal 10:781–785. doi:10.2136/vzj2011.0084.
    OpenUrlAbstract/FREE Full Text
  58. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Lowery, B.,
    2. W.J. Hickey,
    3. M.A. Arshad, and
    4. R. Lal
    . 1996. Soil water parameters and soil quality. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 143–155. SSSA Special Publication No. 49. Madison, WI: Soil Science Society of America.
  59. ↵
    1. Maharjan, B.,
    2. S. Das, and
    3. B.S. Acharya
    . 2020. Soil health gap: A concept to establish a benchmark for soil health management. Global Ecology and Conservation: e01116. https://doi.org/10.1016/j.gecco.2020.e01116.
  60. ↵
    1. Matamala, R.,
    2. J.D. Jastrow,
    3. R.M. Miller, and
    4. C.T. Garten
    . 2008. Temporal changes in C and N stocks of restored prairie: Implications for C sequestration strategies. Ecological Applications 18:1470–1488.
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    1. Miner, G.L.,
    2. J.A. Delgado,
    3. J.A. Ippolito, and
    4. C.E. Stewart
    . 2020a. Soil health management practices and crop productivity. Agricultural and Environmental Letters 5:e20023. https://doi.org/10.1002/ael2.20023.
    OpenUrl
  62. ↵
    1. Miner, G.L.,
    2. J.A. Delgado,
    3. J.A. Ippolito,
    4. C.E. Stewart,
    5. D.K. Manter,
    6. S.J. Del Grosso,
    7. B.A. Floyd, and
    8. R.E. D’Adamo
    . 2020b. Assessing manure and inorganic nitrogen fertilization impacts on soil health, crop productivity, and crop quality in a continuous maize agroecosystem. Journal of Soil and Water Conservation 75(4):481–498. doi.org/10.2489/jswc.2020.00148.
    OpenUrlAbstract/FREE Full Text
  63. ↵
    1. Moebius-Clune, B.N.,
    2. D.J. Moebius-Clune,
    3. B.K. Gugino,
    4. O.J. Idowu,
    5. R.R. Schindelbeck,
    6. A.J. Ristow,
    7. H.M. van Es,
    8. J.E. Thies,
    9. H.A. Shayler,
    10. M.B. McBride,
    11. K.S.M. Kurtz,
    12. D.W. Wolfe, and
    13. G.S. Abawi
    . 2016. Comprehensive Assessment of Soil Health. The Cornell Framework, 3rd edition. Ithaca, NY: Cornell University. http://www.css.cornell.edu/extension/soil-health/manual.pdf.
  64. ↵
    1. Morrow, J.G.,
    2. D.R. Huggins,
    3. L.A. Carpenter-Boggs, and
    4. J.P. Reganold
    . 2016. Evaluating measures to assess soil health in long-term agroecosystem trials. Soil Science Society of America Journal 80:450–462. doi:10.2136/sssaj2015.08.0308.
    OpenUrlCrossRef
  65. ↵
    1. Norris, C.E.,
    2. G.M. Bean,
    3. S.B. Cappellazzi,
    4. M. Cope,
    5. K.L.H. Greub,
    6. D. Liptzin,
    7. E.L. Rieke,
    8. P.W. Tracy,
    9. C.L.S. Morgan, and
    10. C.W. Honeycutt
    . 2020. Introducing the North American project to evaluate soil health measurements. Agronomy Journal 112:3195–3215. DOI:10.1002/agj2.20234.
    OpenUrlCrossRef
  66. ↵
    1. Nortcliff, S.
    2002. Standardisation of soil quality attributes. Agriculture, Ecosystems & Environment 88:161–168.
    OpenUrl
  67. ↵
    1. Nouri, A.,
    2. J. Lee,
    3. X. Yin,
    4. A.M. Saxon,
    5. D.D. Tyler,
    6. V.R. Sykes, and
    7. P. Arelli
    . 2019. Crop species in no-tillage summer crop rotations affect soil quality and yield in an Alfisol. Geoderma 345:51–62. https://doi.org/10.1016/j.geoderma.2019.02.026.
    OpenUrl
  68. ↵
    1. Nouri, A.,
    2. J. Lee,
    3. D.C. Yoder,
    4. S. Jagadamma,
    5. F.R. Walker,
    6. X. Yin, and
    7. P. Arelli
    . 2020. Management duration controls the synergistic effect of tillage, cover crop, and nitrogen rate on cotton yield and yield stability. Agriculture, Ecosystems and Environment 302:1–7007. https://doi.org/10.1016/j.agee.2020.107007.
    OpenUrl
  69. ↵
    1. NRC (National Research Council)
    . 2001. Basic Research Opportunities in Earth Science. Washington, DC: National Academies Press.
  70. ↵
    1. Pierce, F.J., and
    2. W.E. Larson
    . 1992. Developing criteria to evaluate sustainable land management. Proceedings of the Eighth International Soil Management Workshop, July 11-24, 1992. https://play.google.com/books/reader?id=r-BUkCQZO3EC&hl=en&pg=GBS.PA7.
  71. ↵
    1. Powlson, D.S.,
    2. P.J. Gregory,
    3. W.R. Whalley,
    4. J.N. Quinton,
    5. D.W. Hopkins,
    6. A.P. Whitmore,
    7. P.R. Hirsch, and
    8. K.W.T. Goulding
    . 2011. Soil management in relation to sustainable agriculture and ecosystem services. Food Policy 36:S72–S87. DOI:10.1016/j.foodpol.2010.11.025.
    OpenUrlCrossRefWeb of Science
  72. ↵
    1. Qafoku, N.P.
    2014. Overview of different aspects of climate change effects on soils. US Dept. of Energy Report PNNL-23483. Washington, DC: US Department of Energy. https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-23483.pdf.
  73. ↵
    1. Reeder, J.D.,
    2. G.E. Schuman, and
    3. R.A. Bowman
    . 1998. Soil C and N changes on conservation reserve program lands in the Central Great Plains. Soil and Tillage Research 47:339–349.
    OpenUrl
  74. ↵
    1. Renard, K.G.,
    2. G.R. Foster,
    3. G.A. Weesies,
    4. D.K. McCool, and
    5. D.C. Yoder
    , coordinators. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No. 703. Washington, DC: USDA.
  75. ↵
    1. Richter Jr., D.B.
    2007. Humanity’s transformation of Earth’s soil: Pedology’s new frontier. Soil Science 172(12):957–967. doi:10.1097/ss.0b013e3181586bb7.
    OpenUrlCrossRef
  76. ↵
    1. Richter Jr., D.B., and
    2. M.L. Mobley
    . 2009. Monitoring Earth’s critical zone. Science 326:1067–1068. DOI:10.1126/science.1179117.
    OpenUrlAbstract/FREE Full Text
  77. ↵
    1. Rinot, O.,
    2. G.J. Levy,
    3. Y. Steinberger,
    4. T. Svoray, and
    5. G. Eshel
    . 2019. Soil health assessment: A critical review of current methodologies and a proposed new approach. Science of the Total Environment 648:1484–1491. https://doi.org/10.1016/j.scitotenv.2018.08.259.
    OpenUrlCrossRef
  78. ↵
    1. Robinson, D.A.,
    2. P. Panagos,
    3. P. Borrelli,
    4. A. Jones,
    5. L. Montanarella,
    6. A. Tye, and
    7. C.G. Obst
    . 2017. Soil natural capital in Europe; a framework for state and change assessment. Scientific Reports 7:6706. DOI:10.1038/s41598-017-06819-3.
    OpenUrlCrossRef
  79. ↵
    1. Roque-Malo, S.,
    2. D.K. Woo, and
    3. P. Kumar
    . 2020. Modeling the role of root exudation in critical zone nutrient dynamics. Water Resources Research 56:e2019WR026606. https://doi.org/10.1029/2019WR026606.
    OpenUrl
  80. ↵
    1. Roper, W.R.,
    2. D.L. Osmond, and
    3. J.L. Heitman
    . 2019. A response to “Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields”. Soil Science Society of America Journal 83:1842–1845. doi:10.2136/sssaj2019.06.0198.
    OpenUrlCrossRef
  81. ↵
    1. Roper, W.R.,
    2. D.L. Osmond,
    3. J.L. Heitman,
    4. M.G. Wagger, and
    5. S.C. Reberg-Horton
    . 2017. Soil health indicators do not differentiate among agronomic management systems in North Carolina soils. Soil Science Society of America Journal 81:828–843. doi:10.2136/sssaj2016.12.0400.
    OpenUrlCrossRef
  82. ↵
    1. Rosenzweig, S.T.,
    2. M.A. Carson,
    3. S.G. Baer, and
    4. J.M. Blair
    . 2016. Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration. Applied Soil Ecology 100:186–194. https://doi.org/10.1016/j.apsoil.2016.01.001.
    OpenUrl
  83. ↵
    1. J.W. Doran and
    2. A.J. Jones
    1. Sarrantonio, M.,
    2. J.W. Doran,
    3. M.A. Liebig, and
    4. J.J. Halvorson
    . 1996. On-farm assessment of soil health and quality. In Methods for Assessing Soil Quality, ed. J.W. Doran and A.J. Jones, 83–103. SSSA Special Publication No. 49. Madison, WI: Soil Science Society of America.
  84. ↵
    1. Schindelbeck, R.R.,
    2. H.M. van Es,
    3. G.S. Abawi,
    4. D.W. Wolfe,
    5. T.L. Whitlow,
    6. B.K. Gugino,
    7. O.I. Idowu, and
    8. B.N. Moebius-Clune
    . 2008. Comprehensive assessment of soil quality for landscape and urban management. Landscape and Urban Planning 88:73–80. doi:10.1016/j.landurbplan.2008.08.006.
    OpenUrlCrossRef
  85. ↵
    1. Schoenholtz, S.H.,
    2. H. Van Miegroet, and
    3. J. Burger
    . 2000. A review of chemical and physical properties as indicators of forest soil quality: Challenges and opportunities. Forest Ecology and Management 138:335–356.
    OpenUrlCrossRef
  86. ↵
    1. Schulte, R.P.O.,
    2. R.E. Creamer,
    3. T. Donnelan,
    4. N. Farelly,
    5. R. Fealy,
    6. C. O’Donoghue, and
    7. D. O’hUallachain
    . 2013. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science and Policy 38:45–58.
    OpenUrl
  87. ↵
    1. Shand, P.,
    2. S. Grocke,
    3. N.L. Creeper,
    4. A.K. Baker,
    5. R.W. Fitzpatrick, and
    6. A.J. Love
    . 2017. Impacts of climate change, climate variability and management on soil and water quality in wetlands of South Australia. Procedia Earth and Planetary Science 17:456–459. doi:10.1016/j.proeps.2016.12.115.
    OpenUrlCrossRef
  88. ↵
    1. SHI (Soil Health Institute)
    . 2020. American Project to Evaluate Soil Health Measurements. Morrisville, NC: Soil Health Institute. https://soilhealthinstitute.org/north-american-project-to-evaluate-soil-health-measurements/.
  89. ↵
    1. M.R. Pas Jr.. and
    2. G.E. Aiken
    1. Silveira, M.L., and
    2. M.M. Kohmann
    . 2020. Maintaining soil fertility and health for sustainable pastures. In Management Strategies for Sustainable Cattle Production in Southern Pastures, ed. M.R. Pas Jr.. and G.E. Aiken, 35–58. London: Academic Press, Elsevier. https://doi.org/10.1016/B978-0-12-814474-9.00003-7.
  90. ↵
    1. Singh, S.,
    2. S. Jagadamma,
    3. D. Yoder,
    4. X. Yin, and
    5. F. Walker
    . 2020. Agroecosystem management responses to Haney soil health test in the southeastern United States. Soil Science Society of America Journal. https://doi.org/10.1002/saj2.20131.
  91. ↵
    1. Sojka, R.E., and
    2. D.R. Upchurch
    . 1999. Reservations regarding the soil quality concept. Soil Science Society of America Journal 63(5):1039–1054.
    OpenUrlCrossRefGeoRefWeb of Science
  92. ↵
    1. Sojka, R.E.,
    2. D.R. Upchurch, and
    3. N.E. Borlaug
    . 2003. Quality soil management of soil quality management: Performance versus semantics. Advances in Agronomy 79:1–68.
    OpenUrlGeoRef
  93. ↵
    1. Stavi, I.,
    2. G. Bel, and
    3. E. Zaady
    . 2016. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems: A review. Agronomy for Sustainable Development 36:32. DOI:10.1007/s13593-016-0368-8.
    OpenUrlCrossRef
  94. ↵
    1. Stewart, R.D.,
    2. J. Jian,
    3. A.J. Gyawali,
    4. W.E. Thomason,
    5. B.D. Badgley,
    6. M.S. Reiter, and
    7. M.S. Strickland
    . 2018. What we talk about when we talk about soil health. Agricultural and Environmental Letters 3:180033. doi:10.2134/ael2018.06.0033.
    OpenUrlCrossRef
  95. ↵
    1. Turner, B.L.,
    2. J. Fuhrer,
    3. M. Wuellner,
    4. H.M. Menendez,
    5. B.H. Dunn, and
    6. R. Gates
    . 2018. Scientific case studies in land-use driven soil erosion in the central United States: Why soil potential and risk concepts should be included in the principles of soil health. International Soil and Water Conservation Research 6(1):63–78. https://doi.org/10.1016/j.iswcr.2017.12.004.
    OpenUrl
    1. USDA ARS (Agricultural Research Service)
    . 2008. Science Documentation. Revised Universal Soil Loss Equation Version 2 (RUSLE2). Washington, DC: USDA ARS. https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/RUSLE2_Science_Doc.pdf.
  96. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 2003. Interpreting the Soil Conditioning Index: A Tool for Measuring Soil Organic Matter Trends. USDA NRCS Technical Note 16. Washington, DC: USDA NRCS. https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18545.wba.
  97. ↵
    1. USDA NRCS
    . 2020a. Web Soil Survey. Washington, DC: USDA NRCS. https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm.
  98. ↵
    1. USDA NRCS
    . 2020b. Conservation Compliance. Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/null/?cid=stelprdb1270039.
  99. ↵
    1. USDA NRCS
    . 2020c. Soil Health. Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/.
  100. ↵
    1. USDA NRCS
    . 2020d. Conservation Stewardship Program (CSP). Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/detail/?cid=stelprdb1248788.
  101. ↵
    1. USDA NRCS
    . 2020e. Ecological Site Descriptions. Washington, DC: USDA NRCS. https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/ecoscience/desc/.
  102. ↵
    1. USEPA (US Environmental Protection Agency)
    . 1999. Rapid Bioassessment Protocols for use in Wadeable Streams and Rivers. Periphyton, Benthic Macroinvertebrates, and Fish, 2nd Edition. USEPA 841-B-99-002. Washington, DC: USEPA. https://www.epa.gov/sites/production/files/2019-02/documents/rapid-bioassessment-streams-rivers-1999.pdf.
  103. ↵
    1. USEPA
    . 2020. An Introduction to the Index of Biotic Integrity. Washington, DC: USEPA. https://web.archive.org/web/20100121100911/http://www.epa.gov/bioindicators/html/ibi-hist.html.
  104. ↵
    1. van Es, H.M., and
    2. D.L. Karlen
    . 2019. Reanalysis validates soil health indicator sensitivity and correlation with long-term crop yields. Soil Science Society of America Journal 83:721–732. doi:10.2136/sssaj2018.09.0338.
    OpenUrlCrossRef
  105. ↵
    1. Vatn, A., and
    2. D.W. Bromley
    . 1994. Choices without prices without apologies. Journal of Environmental Economics and Management 26:129–148.
    OpenUrlCrossRefWeb of Science
  106. ↵
    1. Wander, M.M.,
    2. L.J. Cihacek,
    3. M. Coyne,
    4. R.A. Drijber,
    5. J.M. Grossman,
    6. J.L.L. Gutknecht,
    7. W.R. Horwath,
    8. S. Jagadamma,
    9. D.C. Olk,
    10. M. Ruark,
    11. S.S. Snapp,
    12. L.K. Tiemann,
    13. R. Weil, and
    14. R.F. Turco
    . 2019. Developments in agricultural soil quality and health: Reflections by the Research Committee on Soil Organic Matter Management. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2019.00109.
  107. ↵
    1. Wander, M.M.,
    2. G.L. Walter,
    3. T.M. Nissen,
    4. G.A. Bollero,
    5. S.S. Andrews, and
    6. D.A. Cavanaugh-Grant
    . 2002. Soil quality: Science and process. Agronomy Journal 94:23–32.
    OpenUrl
  108. ↵
    1. Warkentin, B.P.
    1995. The changing concept of soil quality. Journal of Soil and Water Conservation 50(3):226–228.
    OpenUrlFREE Full Text
  109. ↵
    1. Wienhold, B.H.,
    2. S.S. Andrews, and
    3. D.L. Karlen
    . 2004. Soil quality: A review of the science and experiences in the USA. Environmental Geochemistry and Health 26:89–95.
    OpenUrlCrossRefPubMedWeb of Science
  110. ↵
    1. Wischmeier, W.H., and
    2. D.D. Smith
    . 1978. Predicting rainfall erosion losses—A guide to conservation planning. Agriculture Handbook No. 537. Washington, DC: USDA.
  111. ↵
    1. Xu, S.,
    2. J. Rowntree,
    3. P. Borrelli,
    4. J. Hodbod, and
    5. M.R. Raven
    . 2019. Ecological Health Index: A short-term monitoring method for land managers to assess grazing lands ecological health. Environments 6(6):67. https://doi.org/10.3390/environments6060067.
    OpenUrl
  112. ↵
    1. Zobeck, T.M.,
    2. J. Crownover,
    3. M. Dollar,
    4. R.S. Van Pelt,
    5. V. Acosta-Martinez,
    6. K.F. Bronson, and
    7. D.R. Upchruch
    . 2007. Investigation of Soil Conditioning Index values for Southern High Plains agroecosystems. Journal of Soil and Water Conservation 62(6):433–442.
    OpenUrlAbstract/FREE Full Text
  113. ↵
    1. Zobeck, T.M.,
    2. J.L. Steiner,
    3. D.E. Stott,
    4. S.E. Duke,
    5. P.J. Starks,
    6. D.N. Moriasi, and
    7. D.L. Karlen
    . 2014. Soil quality index comparisons using Fort Cobb, Oklahoma, watershed-scale land management data. Soil Science Society of America Journal 79:224–238.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (1)
Journal of Soil and Water Conservation
Vol. 77, Issue 1
January/February 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Soil health: Meaning, measurement, and value through a critical zone lens
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
2 + 5 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Soil health: Meaning, measurement, and value through a critical zone lens
D.C. Yoder, S. Jagadamma, S. Singh, A. Nouri, S. Xu, D. Saha, S.M. Schaeffer, N. Adotey, F.R. Walker, J. Lee, M. Budipradigdo
Journal of Soil and Water Conservation Jan 2022, 77 (1) 88-99; DOI: 10.2489/jswc.2022.00042

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Soil health: Meaning, measurement, and value through a critical zone lens
D.C. Yoder, S. Jagadamma, S. Singh, A. Nouri, S. Xu, D. Saha, S.M. Schaeffer, N. Adotey, F.R. Walker, J. Lee, M. Budipradigdo
Journal of Soil and Water Conservation Jan 2022, 77 (1) 88-99; DOI: 10.2489/jswc.2022.00042
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Why Critical Zone Science Should Care about Soil Health
    • How, Where, and When Should We Measure Critical Zone Soil Health?
    • Soil Health: Relative to What?
    • How Is Soil Health Related to Sustainability?
    • Conclusions
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Ecosystem services in Iowa agricultural catchments: Hypotheses for scenarios with water quality wetlands and improved tile drainage
  • Integrated data across multiple and diverse disciplines are essential for developing a sustainable food system
Show more Research Editorial

Similar Articles

Keywords

  • critical zone
  • soil health
  • sustainability

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society