Skip to main content

Main menu

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us

User menu

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Soil and Water Conservation

  • Register
  • Subscribe
  • My alerts
  • Log in
  • My Cart
Journal of Soil and Water Conservation

Advanced Search

  • Home
  • Content
    • Current Issue
    • Early Online
    • Archive
    • Subject Collections
  • Info For
    • Authors
    • Reviewers
    • Subscribers
    • Advertisers
  • About
    • About JSWC
    • Editorial Board
    • Permissions
    • Alerts
    • RSS Feeds
    • Contact Us
  • Follow SWCS on Twitter
  • Visit SWCS on Facebook
Research ArticleRESEARCH SECTION

Contribution of streambanks to phosphorus export from Iowa

K.E. Schilling, T.M. Isenhart, C.F. Wolter, M.T. Streeter and J.L. Kovar
Journal of Soil and Water Conservation March 2022, 77 (2) 103-112; DOI: https://doi.org/10.2489/jswc.2022.00036
K.E. Schilling
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
T.M. Isenhart
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C.F. Wolter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.T. Streeter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J.L. Kovar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

References

  1. ↵
    1. Beck, W.J.
    2018. Sediment and phosphorus dynamics within the channel and floodplain of Walnut Creek, Iowa. PhD dissertation, Iowa State University.
  2. ↵
    1. Beck, W.,
    2. T. Isenhart,
    3. P. Moore,
    4. K. Schilling,
    5. R. Schultz, and
    6. M. Tomer
    . 2018. Streambank alluvial unit contributions to suspended sediment and total phosphorus loads, Walnut Creek, Iowa, USA. Water 10:111.
    OpenUrl
  3. ↵
    1. Beck, W.J.,
    2. P.L. Moore,
    3. K.E. Schilling,
    4. C.F. Wolter,
    5. T.M. Isenhart,
    6. K.J. Cole, and
    7. M.D. Tomer
    . 2019. Changes in lateral floodplain connectivity accompanying stream channel evolution: Implications for sediment and nutrient budgets. Science of the Total Environment 660:1015-1028.
    OpenUrl
  4. ↵
    1. Belmont, P.,
    2. K.B. Gran,
    3. S.P. Schottler,
    4. P.R. Wilcock,
    5. S.S. Day,
    6. C. Jennings,
    7. J.W. Lauer,
    8. E. Viparelli,
    9. J.K. Willenbring,
    10. D.R. Engstrom, and
    11. G. Parker
    . 2011. Large shift in source of fine sediment in the Upper Mississippi River. Environmental Science & Technology 45:8804-8810.
    OpenUrl
  5. ↵
    1. Christianson, R.,
    2. L. Christianson,
    3. C. Wong,
    4. M. Helmers,
    5. G. McIsaac,
    6. D. Mulla, and
    7. M. McDonald
    . 2018. Beyond the nutrient strategies: Common ground to accelerate agricultural water quality improvement in the upper Midwest. Journal of Environmental Management 206:1072-1080.
    OpenUrl
  6. ↵
    1. Couper, P.,
    2. T. Stott, and
    3. I. Maddock
    . 2002. Insights into river bank erosion processes derived from analysis of negative erosion-pin recordings: Observations from three recent UK studies. Earth Surface Processes and Landforms 27:59-79.
    OpenUrlCrossRefGeoRefWeb of Science
  7. ↵
    1. Crosland, A.R.,
    2. F.J, Zhao,
    3. S.P. McGrath, and
    4. P.W. Lane
    . 1995. Comparison of aqua regia digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy (ICP). Communications in Soil Science and Plant Analysis 26:1357-1368.
    OpenUrlCrossRefWeb of Science
  8. ↵
    1. Diaz, R.J.
    2001. Overview of hypoxia around the world. Journal of Environmental Quality 30:275-281.
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Florsheim, J.L.,
    2. J.F. Mount, and
    3. A. Chin
    . 2008. Bank erosion as a desirable attribute xof rivers. BioScience 58:519-529.
    OpenUrlCrossRefWeb of Science
  10. ↵
    1. Fox, G.A.,
    2. R.A. Purvis, and
    3. C.J. Penn
    . 2016. Streambanks: A net source of sediment and phosphorus to streams and rivers. Journal of Environmental Management 181:602-614.
    OpenUrl
  11. ↵
    1. Fox, G.A.,
    2. G.V. Wilson,
    3. A. Simon,
    4. E.J. Langendoen,
    5. O. Akay, and
    6. J.W. Fuchs
    . 2007. Measuring streambank erosion due to ground water seepage: Correlation to bank pore water pressure, precipitation and stream stage. Earth Surface Processes and Landforms 32:1558-1573.
    OpenUrlCrossRefGeoRefWeb of Science
  12. ↵
    1. Gentry, L.E.,
    2. M.B. David,
    3. T.V. Royer,
    4. C.A. Mitchell, and
    5. K.M. Starks
    . 2007. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. Journal of Environmental Quality 36:408-415.
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Hamlett, J.M.,
    2. J.L. Baker, and
    3. H.P. Johnson
    . 1983. Channel morphology changes and sediment yield for a small agricultural watershed in Iowa. Transactions of the ASAE 26:1390-1396.
    OpenUrl
  14. ↵
    1. Hecky, R.E., and
    2. P. Kilham
    . 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnology and Oceanography 33:796-822.
    OpenUrlWeb of Science
  15. ↵
    1. Hooke, J.M.
    1980. Magnitude and distribution of rates of river bank erosion. Earth surface Processes 5:143-157.
    OpenUrlGeoRefWeb of Science
  16. ↵
    1. Ishee, E.R.,
    2. D.S. Ross,
    3. K.M. Garvey,
    4. R.R. Bourgault, and
    5. C.R. Ford
    . 2015. Phosphorus characterization and contribution from eroding streambank soils of Vermont’s Lake Champlain Basin. Journal of Environmental Quality 44:1745-1753.
    OpenUrl
  17. ↵
    1. Jacobson, L.M.,
    2. M.B. David, and
    3. L.E. Drinkwater
    . 2011. A spatial analysis of phosphorus in the Mississippi River Basin. Journal of Environmental Quality 40:931-941.
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Jones, C.S.,
    2. J.K. Nielsen,
    3. K.E. Schilling, and
    4. L.J. Weber
    . 2018. Iowa stream nitrate and the Gulf of Mexico. PloS One 13:e0195930.
    OpenUrl
  19. ↵
    1. Jones, C.S., and
    2. K.E. Schilling
    . 2011. From agricultural intensification to conservation: Sediment transport in the Raccoon River, Iowa, 1916–2009. Journal of Environmental Quality 40:1911-1923.
    OpenUrlCrossRefGeoRefPubMed
  20. ↵
    1. King, K.W.,
    2. M.R. Williams, and
    3. N.R. Fausey
    . 2015a. Contributions of systematic tile drainage to watershed-scale phosphorus transport. Journal of Environmental Quality 44:486-494.
    OpenUrlCrossRef
  21. ↵
    1. King, K.W.,
    2. M.R. Williams,
    3. M.L. Macrae,
    4. N.R. Fausey,
    5. J. Frankenberger,
    6. D.R. Smith,
    7. P.J. Kleinman, and
    8. L.C. Brown
    . 2015b. Phosphorus transport in agricultural subsurface drainage: A review. Journal of Environmental Quality 44:467-485.
    OpenUrlCrossRefPubMed
  22. ↵
    1. Knox, J.C.
    2001. Agricultural influence on landscape sensitivity in the Upper Mississippi River Valley. Catena 42:193-224.
    OpenUrlGeoRef
    1. Kronvang, B.,
    2. J. Audet,
    3. A. Baattrup-Pedersen,
    4. H.S. Jensen, and
    5. S.E. Larsen
    . 2012. Phosphorus load to surface water from bank erosion in a Danish lowland river basin. Journal of Environmental Quality 41:304-313.
    OpenUrlPubMed
  23. ↵
    1. Landemaine, V.,
    2. A. Gay,
    3. O. Cerdan,
    4. S. Salvador-Blanes, and
    5. S. Rodrigues
    . 2015. Morphological evolution of a rural headwater stream after channelization. Geomorphology 230:125-137.
    OpenUrlGeoRef
  24. ↵
    1. Lane, E.W.
    1955. Importance of fluvial morphology in hydraulic engineering. Proceedings of the American Society of Civil Engineers 81(7):1-17.
    OpenUrl
  25. ↵
    1. Laubel, A.,
    2. K.B. Kronvang,
    3. A.B. Hald, and
    4. C. Jensen
    . 2003. Hydromorphological and biological factors influencing sediment and phosphorus loss via bank erosion in small lowland rural streams in Denmark. Hydrological Processes 17:3443-3463.
    OpenUrlCrossRefGeoRef
  26. ↵
    1. P.A. Carling and
    2. G.E. Petts
    1. Lawler, D.M.
    1992. Process dominance in bank erosion systems. In Lowland Floodplain Rivers: Geomorphological Perspectives, ed. P.A. Carling and G.E. Petts, 117-143. Chichester, UK: Wiley.
  27. ↵
    1. Leopold, L.B.,
    2. M.G. Wolman, and
    3. J.P. Miller
    . 1964. Fluvial Processes in Geomorphology. San Francisco, CA: Freeman.
  28. ↵
    1. Miller, R.B.,
    2. G.A. Fox,
    3. C.J. Penn,
    4. S. Wilson,
    5. A. Parnell,
    6. R.A. Purvis, and
    7. K. Criswell
    . 2014. Estimating sediment and phosphorus loads from streambanks with and without riparian protection. Agriculture, Ecosystems & Environment 189:70-81.
    OpenUrl
  29. ↵
    1. Moustakidis, I.V.,
    2. K.E. Schilling, and
    3. L.J. Weber
    . 2019. Soil total phosphorus deposition and variability patterns across the floodplains of an Iowa river. Catena 174:84-94.
    OpenUrl
  30. ↵
    1. Nellesen, S.L.,
    2. J.L. Kovar,
    3. M.M. Haan, and
    4. J.R. Russell
    . 2011. Grazing management effects on stream bank erosion and phosphorus delivery to a pasture stream. Canadian Journal of Soil Science 91:385–395.
    OpenUrlCrossRef
  31. ↵
    1. Palmer, J.A.,
    2. K.E. Schilling,
    3. T.M. Isenhart,
    4. R.C. Schultz, and
    5. M.D. Tomer
    . 2014. Streambank erosion rates and loads within a single watershed: Bridging the gap between temporal and spatial scales. Geomorphology 209:66-78.
    OpenUrlGeoRef
  32. ↵
    1. Peacher, R.D.,
    2. R.N. Lerch,
    3. R.C. Schultz,
    4. C.D. Willett, and
    5. T.M. Isenhart
    . 2018. Factors controlling streambank erosion and phosphorus loss in claypan watersheds. Journal of Soil and Water Conservation 73(2):189-199. https://doi.org/10.2489/jswc.73.2.189.
    OpenUrlAbstract/FREE Full Text
  33. ↵
    1. Piégay, H.,
    2. S.E. Darby,
    3. E. Mosselman, and
    4. N. Surian
    . 2005. A review of techniques available for delimiting the erodible river corridor: A sustainable approach to managing bank erosion. River Research and Applications 21:773-789.
    OpenUrlCrossRefGeoRefWeb of Science
  34. ↵
    1. Pollen, N.,
    2. A. Simon, and
    3. A. Collison
    . 2004. Advances in assessing the mechanical and hydrologic effects of riparian vegetation on streambank stability. Riparian Vegetation and Fluvial Geomorphology 8:125-139.
    OpenUrl
  35. ↵
    1. Purvis, R.A., and
    2. G.A. Fox
    . 2016. Streambank sediment loading rates at the watershed scale and the benefit of riparian protection. Earth Surface Processes and Landforms 41:1327-1336.
    OpenUrl
  36. ↵
    1. Qian, T.,
    2. A. Dai, and
    3. K.E. Trenberth
    . 2007. Hydroclimatic trends in the Mississippi River basin from 1948 to 2004. Journal of Climate 20:4599-4614.
    OpenUrlCrossRef
  37. ↵
    1. Rahutomo, S.,
    2. J.L. Kovar, and
    3. M.L. Thompson
    . 2018. Inorganic and organic phosphorus in sediments in the Walnut Creek Watershed of central Iowa, USA. Water, Air, & Soil Pollution 229:1-12.
    OpenUrl
  38. ↵
    1. Rundhaug, T.J.,
    2. G.R. Geimer,
    3. C.W. Drake,
    4. A.A. Amado,
    5. A.A. Bradley,
    6. C.F. Wolter, and
    7. L.J. Weber
    . 2018. Agricultural conservation practices in Iowa watersheds: Comparing actual implementation with practice potential. Environmental Monitoring and Assessment 190:659.
    OpenUrl
  39. ↵
    1. Robertson, D.M., and
    2. S.A. Saad
    . 2013. SPARROW models used to understand nutrient sources in the Mississippi/Atchafalaya River Basin. Journal of Environmental Quality 42:1422-1440.
    OpenUrl
  40. ↵
    1. Schilling, K.E.,
    2. T.M. Isenhart,
    3. J.A. Palmer,
    4. C.F. Wolter, and
    5. J. Spooner
    . 2011. Impacts of land-cover change on suspended sediment transport in two agricultural watersheds. Journal of the American Water Resources Association 47:672-686.
    OpenUrlCrossRefGeoRef
  41. ↵
    1. Schilling, K.E.,
    2. P.J. Jacobson, and
    3. C.F. Wolter
    . 2018. Using riparian zone scaling to optimize buffer placement and effectiveness. Landscape Ecology 33:141-156.
    OpenUrl
  42. ↵
    1. Schilling, K.E.,
    2. S.W. Kim,
    3. C.S. Jones, and
    4. C.F. Wolter
    . 2017. Orthophosphorus contributions to total phosphorus concentrations and loads in Iowa agricultural watersheds. Journal of Environmental Quality 46:828-835.
    OpenUrl
  43. ↵
    1. Schilling, K.E.,
    2. J.A. Palmer,
    3. E.A. Bettis III.,
    4. P. Jacobson,
    5. R.C. Schultz, and
    6. T.M. Isenhart
    . 2009. Vertical distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek, southern Iowa. Catena 77:266-273.
    OpenUrlGeoRef
  44. ↵
    1. Schilling, K.E.,
    2. M.T. Streeter,
    3. A. Seeman,
    4. C.S. Jones, and
    5. C.F. Wolter
    . 2020. Total phosphorus export from Iowa agricultural watersheds: Quantifying the scope and scale of a regional condition. Journal of Hydrology 581:124397.
    OpenUrl
  45. ↵
    1. Schilling, K.E., and
    2. C.F. Wolter
    . 2000. Application of GPS and GIS to map channel features in Walnut Creek, Iowa. Journal of the American Water Resources Association 36:1423-1434.
    OpenUrlGeoRef
  46. ↵
    1. Schottler, S.P.,
    2. J. Ulrich,
    3. P. Belmont,
    4. R. Moore,
    5. J.W. Lauer,
    6. D.R. Engstrom, and
    7. J.E. Almendinger
    . 2014. Twentieth century agricultural drainage creates more erosive rivers. Hydrological Processes 28:1951-1961.
    OpenUrl
  47. ↵
    1. Sekely, A.C.,
    2. D.J. Mulla, and
    3. D.W. Bauer
    . 2002. Streambank slumping and its contribution to the phosphorus and suspended sediment loads of the Blue Earth River, Minnesota. Journal of Soil and Water Conservation 57(5):243-250.
    OpenUrlAbstract/FREE Full Text
  48. ↵
    1. Sharpley, A.
    1995. Identifying sites vulnerable to phosphorus loss in agricultural runoff. Journal of Environmental Quality 24:947-951.
    OpenUrlWeb of Science
  49. ↵
    1. Simon, A., and
    2. A.J. Collison
    . 2002. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surface Processes and Landforms 27:527-546.
    OpenUrlCrossRefGeoRefWeb of Science
  50. ↵
    1. Simon, A.,
    2. A. Curini,
    3. S. Darby, and
    4. E.J. Langendoen
    . 2000. Bank and near-bank processes in an incised channel. Geomorphology 35:193-217.
    OpenUrlCrossRefGeoRefWeb of Science
  51. ↵
    1. Simon, A., and
    2. M. Rinaldi
    . 2000. Channel instability in the loess area of the Midwestern United States. Journal of the American Water Resources Association 36:133-150.
    OpenUrlCrossRefGeoRefWeb of Science
  52. ↵
    1. Simon, A., and
    2. M. Rinaldi
    . 2006. Disturbance, stream incision, and channel evolution: The roles of excess transport capacity and boundary materials in controlling channel response. Geomorphology 79:361-383.
    OpenUrlCrossRefGeoRefWeb of Science
  53. ↵
    1. Smith, D.R.,
    2. K.W. King,
    3. L. Johnson,
    4. W. Francesconi,
    5. P. Richards,
    6. D. Baker, and
    7. A.N. Sharpley
    . 2015. Surface runoff and tile drainage transport of phosphorus in the midwestern United States. Journal of Environmental Quality 44:495-502.
    OpenUrlCrossRefPubMed
    1. Stamm, C.H.,
    2. H. Flühler,
    3. R. Gächter,
    4. J. Leuenberger, and
    5. H. Wunderli
    . 1998. Preferential transport of phosphorus in drained grassland soils. Journal of Environmental Quality 27:515-522.
    OpenUrlGeoRefWeb of Science
  54. ↵
    1. Streeter, M.T.,
    2. K.E. Schilling,
    3. C.L. Burras, and
    4. C.F. Wolter
    . 2021. Erosion and sediment delivery in southern Iowa watersheds: Implications for conservation planning. Journal of Soil and Water Conservation 76(2):103-115. https://doi.org/10.2489/jswc.2021.00125.
    OpenUrlAbstract/FREE Full Text
  55. ↵
    1. Sylvan, J.B.,
    2. Q. Dortch,
    3. D.M. Nelson,
    4. A.F. Maier Brown,
    5. W. Morrison, and
    6. J.W. Ammerman
    . 2006. Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environmental Science & Technology 40:7548-7553.
    OpenUrl
  56. ↵
    1. Takle, E.S., and
    2. W.J. Gutowski Jr.
    . 2020. Iowa’s agriculture is losing its Goldilocks climate. Physics Today 73:26-33.
    OpenUrl
  57. ↵
    1. Thoma, D.P.,
    2. S.C. Gupta,
    3. M.E. Bauer, and
    4. C.E. Kirchoff
    . 2005. Airborne laser scanning for riverbank erosion assessment. Remote Sensing of Environment 95:493-501.
    OpenUrlCrossRefGeoRef
  58. ↵
    1. Tomer, M.D., and
    2. J.D. Van Horn
    . 2018. Stream bank and sediment movement associated with 2008 flooding, South Fork Iowa River. Journal of Soil and Water Conservation 73(2):97-106. https://doi.org/10.2489/jswc.73.2.97.
    OpenUrlAbstract/FREE Full Text
  59. ↵
    1. Tufekcioglu, M.,
    2. T.M. Isenhart,
    3. R.C. Schultz,
    4. D.A. Bear,
    5. J.L. Kovar, and
    6. J.R. Russell
    . 2012. Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun Lake Watershed in southern Iowa, United States. Journal of Soil and Water Conservation 67(6):545-555. https://doi.org/10.2489/jswc.67.6.545.
    OpenUrlAbstract/FREE Full Text
  60. ↵
    1. Turner, R.E.,
    2. N.N. Rabalais, and
    3. D. Justic
    . 2008. Gulf of Mexico hypoxia: Alternate states and a legacy. Environmental Science & Technology 42:2323-2327.
    OpenUrl
  61. ↵
    1. USDA NRCS (Natural Resources Conservation Service)
    . 1998. Erosion and Sediment Delivery. Field Office Technical Guide Notice No. IA-198. Des Moines, IA: USDA Natural Resources Conservation Service.
  62. ↵
    1. Villarini,
    2. G.,
    3. E. Scoccimarro, and
    4. S. Gualdi
    . 2013. Projections of heavy rainfall over the central United States based on CMIP5 models. Atmospheric Science Letters 14:200-205.
    OpenUrl
  63. ↵
    1. Watanabe, F.S., and
    2. S.R. Olsen
    . 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America, Proceedings 29:677-678.
    OpenUrlCrossRef
  64. ↵
    1. Willett, C.D.,
    2. R.N. Lerch,
    3. R.C. Schultz,
    4. S.A. Berges,
    5. P.D. Peacher, and
    6. T.M. Isenhart
    . 2012. Streambank erosion in two watersheds of the Central Claypan Region of Missouri, United States. Journal of Soil and Water Conservation 67(4):249-263. https://doi.org/10.2489/jswc.67.4.249.
    OpenUrlAbstract/FREE Full Text
  65. ↵
    1. Wilkin, D.C., and
    2. S.J. Hebel
    . 1982. Erosion, redeposition, and delivery of sediment to Midwestern streams. Water Resources Research 18:1278-1282.
    OpenUrlCrossRefGeoRef
  66. ↵
    1. Williams, F.
    2019. Combining field and automated methods to estimate bank erosion: A regional estimation of sediment and phosphorus loads. Unpublished Master’s thesis, Iowa State University.
  67. ↵
    1. Wilson, C.G.,
    2. R.A. Kuhnle,
    3. D.D. Bosch,
    4. J.L. Steiner,
    5. P. Starks,
    6. M.D. Tomer, and
    7. G.V. Wilson
    . 2008. Quantifying relative contributions from sediment sources in Conservation Effects Assessment Project watersheds. Journal of Soil and Water Conservation 63(6):523-532. https://doi.org/10.2489/jswc.63.6.523.
    OpenUrlAbstract/FREE Full Text
  68. ↵
    1. Wolter, C.F.,
    2. K.E. Schilling, and
    3. J.A. Palmer
    . 2021. Quantifying the extent of eroding streambanks in Iowa. Journal of the American Water Resources Association 57:391-405.
    OpenUrl
  69. ↵
    1. Zaimes, G.N.,
    2. R.C. Schultz, and
    3. T.M. Isenhart
    . 2004. Stream bank erosion adjacent to riparian forest buffers, row-crop fields, and continuously-grazed pastures along Bear Creek in central Iowa. Journal of Soil and Water Conservation 59(1):19-27.
    OpenUrlAbstract/FREE Full Text
  70. ↵
    1. Zaimes, G.N.,
    2. R.C. Schultz, and
    3. T.M. Isenhart
    . 2006. Riparian land uses and precipitation influences on stream erosion in central Iowa. Journal of the American Water Resources Association 42:83-97.
    OpenUrlCrossRefGeoRef
  71. ↵
    1. Zaimes, G.N.,
    2. R.C. Schultz, and
    3. T.M. Isenhart
    . 2008. Streambank soil and phosphorus losses under different riparian land-uses in Iowa. Journal of the American Water Resources Association 44:935-947.
    OpenUrlCrossRef
  72. ↵
    1. Zaimes, G.N.,
    2. M. Tufekcioglu, and
    3. R.C. Schultz
    . 2019. Riparian land-use impacts on stream bank and gully erosion in agricultural watersheds: What we have learned. Water 11:1343.
    OpenUrl
PreviousNext
Back to top

In this issue

Journal of Soil and Water Conservation: 77 (2)
Journal of Soil and Water Conservation
Vol. 77, Issue 2
March/April 2022
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Front Matter (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on Journal of Soil and Water Conservation.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Contribution of streambanks to phosphorus export from Iowa
(Your Name) has sent you a message from Journal of Soil and Water Conservation
(Your Name) thought you would like to see the Journal of Soil and Water Conservation web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
5 + 4 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.
Citation Tools
Contribution of streambanks to phosphorus export from Iowa
K.E. Schilling, T.M. Isenhart, C.F. Wolter, M.T. Streeter, J.L. Kovar
Journal of Soil and Water Conservation Mar 2022, 77 (2) 103-112; DOI: 10.2489/jswc.2022.00036

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Request Permissions
Share
Contribution of streambanks to phosphorus export from Iowa
K.E. Schilling, T.M. Isenhart, C.F. Wolter, M.T. Streeter, J.L. Kovar
Journal of Soil and Water Conservation Mar 2022, 77 (2) 103-112; DOI: 10.2489/jswc.2022.00036
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Materials and Methods
    • Results and Discussion
    • Summary and Conclusions
    • Acknowledgements
    • References
  • Figures & Data
  • Info & Metrics
  • References
  • PDF

Related Articles

  • No related articles found.
  • Google Scholar

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Smart control of agricultural water wells in western Iran: Application of the Q-methodology
  • Soil health through farmers’ eyes: Toward a better understanding of how farmers view, value, and manage for healthier soils
  • Policy process and problem framing for state Nutrient Reduction Strategies in the US Upper Mississippi River Basin
Show more Research Section

Similar Articles

Keywords

  • erosion
  • nonpoint source pollution
  • phosphorus
  • streambank

Content

  • Current Issue
  • Early Online
  • Archive
  • Subject Collections

Info For

  • Authors
  • Reviewers
  • Subscribers
  • Advertisers

Customer Service

  • Subscriptions
  • Permissions and Reprints
  • Terms of Use
  • Privacy

SWCS

  • Membership
  • Publications
  • Meetings and Events
  • Conservation Career Center

© 2023 Soil and Water Conservation Society